✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着数字图像在信息传播中的重要性日益凸显,图像的安全传输和存储面临着严峻挑战。传统的文本加密算法由于图像数据量大、像素相关性强等特点,难以高效地应用于图像加密。为了解决这一问题,本文提出了一种基于离散小波变换(DWT)和混沌映射相结合的新型图像加密算法。该算法首先利用DWT对原始图像进行多分辨率分解,获得低频分量和高频分量,从而降低像素间的相关性。然后,利用混沌系统对分解后的不同频率分量进行置乱和扩散操作,以实现高强度的加密效果。低频分量由于包含图像的主要信息,采用更复杂的混沌映射进行置乱和扩散;高频分量则利用相对简单的混沌映射进行处理。加密过程中,混沌系统的初始条件和控制参数可由用户提供的密钥生成,确保算法的密钥敏感性。通过理论分析和实验仿真,验证了本文所提出的算法在加密性能、抗攻击能力和密钥空间等方面的优越性。与现有的基于混沌的图像加密算法相比,该算法不仅能够有效抵御统计分析攻击和差分攻击,而且能够更好地保护图像的视觉信息。
关键词: 图像加密;离散小波变换;混沌映射;置乱;扩散;安全性分析
1. 引言
在当今数字化时代,图像已成为信息交流的重要载体,广泛应用于社交媒体、远程医疗、军事侦察等领域。然而,图像信息的开放性和易复制性也带来了潜在的安全风险,例如非法访问、篡改和泄露等。因此,研究高效、安全的图像加密技术具有重要的理论意义和实际应用价值。
传统的加密算法,如数据加密标准(DES)、高级加密标准(AES)等,主要针对文本数据设计,其处理单元为比特或字节。将这些算法直接应用于图像加密存在诸多不足:首先,图像数据量庞大,传统的块加密算法处理速度慢,效率低下;其次,图像像素间存在高度的空间相关性,这使得简单的置换和代替操作不足以消除这种相关性,容易受到统计分析攻击。
为了克服传统加密算法在图像加密中的不足,研究人员提出了多种基于图像特性的加密算法。其中,基于混沌系统的图像加密算法因其独特的性质而备受关注。混沌系统具有对初始条件和参数的敏感依赖性、遍历性、非周期性和不可预测性等特性,与密码学的混淆和扩散原则高度契合。利用混沌系统的这些特性,可以设计出具有良好加密性能的图像加密算法。
目前,基于混沌的图像加密算法主要分为两类:基于位置置乱的加密算法和基于像素值扩散的加密算法。位置置乱通过改变像素的空间位置来打乱图像的视觉信息,而像素值扩散则通过改变像素的灰度值来消除像素间的相关性。许多研究将置乱和扩散相结合,以增强加密强度。常见的混沌映射包括Logistic映射、Chen混沌系统、Lorenz混沌系统等。
然而,现有的基于混沌的图像加密算法仍存在一些挑战。例如,一些算法只对原始图像进行整体处理,未能充分利用图像在不同频率分量上的特性;部分算法的密钥空间较小,容易受到穷举攻击;一些算法的安全性分析不够充分,存在潜在的漏洞。
为了进一步提高图像加密算法的安全性,本文提出了一种基于离散小波变换和混沌映射相结合的新型图像加密算法。DWT作为一种有效的多分辨率分析工具,能够将图像分解为不同频率分量,从而降低像素间的相关性。混沌映射则用于对这些频率分量进行高强度的置乱和扩散。通过将DWT与混沌系统相结合,可以充分利用两者的优势,设计出更具鲁硕性和安全性的图像加密算法。
本文的组织结构如下:第二节回顾了离散小波变换和混沌系统的相关理论;第三节详细阐述了所提出的基于离散小波变换和混沌映射的图像加密算法的设计;第四节对算法的安全性进行了理论分析和实验仿真;第五节总结了全文,并展望了未来的研究方向。
2. 相关理论基础
2.1 离散小波变换 (DWT)
离散小波变换是一种重要的时频分析工具,可以将信号或图像分解为不同频率和不同尺度的分量。对于二维图像,DWT通过对图像的行和列分别进行小波分解,可以将原始图像分解为一个低频子带(LL)和三个高频子带(HL, LH, HH)。
LL子带包含了图像的主要信息,是原始图像的缩小版本;HL子带包含水平方向的边缘信息;LH子带包含垂直方向的边缘信息;HH子带包含对角线方向的边缘信息。一级DWT分解如图1所示。
[插入图1:一级二维DWT分解示意图,显示原始图像被分解为LL, HL, LH, HH四个子带]
多级DWT分解可以进一步分解LL子带,从而获得更精细的多分辨率表示。在图像加密中,DWT的应用可以有效地降低像素间的相关性,为后续的混沌置乱和扩散提供基础。
2.2 混沌系统
混沌系统是一类非线性动力学系统,其行为对初始条件和参数具有极其敏感的依赖性。微小的初始条件变化可能导致系统轨迹的巨大差异。混沌系统的这些特性使得它们非常适合用于密码学中的加密算法。
3. 基于DWT和混沌映射的图像加密算法设计
本文提出的图像加密算法流程如图2所示。
[插入图2:基于DWT和混沌映射的图像加密算法流程图,包含DWT分解,不同频率分量的混沌处理,以及逆DWT合成]
该算法主要包括以下几个步骤:
3.1 图像预处理与DWT分解
3.2 基于混沌映射的置乱与扩散
对分解后的LL, HL, LH, HH四个子带分别进行基于混沌映射的置乱和扩散操作。考虑到不同子带的重要性不同,我们对LL子带采用更复杂的混沌映射和处理策略,而对高频子带采用相对简单的策略。
3.3 逆DWT合成
对加密后的LL, HL, LH, HH子带进行逆DWT(IDWT)操作,将它们合成为最终的加密图像 𝐶C。IDWT是DWT的逆过程,可以将不同频率子带合成为原始尺寸的图像。
3.4 密钥管理
算法的安全性很大程度上取决于密钥的质量。本文算法的密钥可以包括用于生成混沌系统初始条件和控制参数的秘密信息。例如,可以将一个用户提供的字符串密钥通过哈希函数生成多个数值,这些数值可以作为Logistic映射的初始值和控制参数,以及Chen混沌系统的初始条件和参数。密钥空间的计算应该足够大,以抵御穷举攻击。
4. 安全性分析与实验仿真
为了评估所提出算法的安全性,我们将进行理论分析和实验仿真。
⛳️ 运行结果
🔗 参考文献
[1] 樊春霞,姜长生.一种基于混沌映射的图像加密算法[J].光学精密工程, 2004, 12(2).DOI:10.3321/j.issn:1004-924X.2004.02.011.
[2] 樊春霞,姜长生.一种基于混沌映射的图像加密算法[J].光学精密工程, 2004.DOI:JournalArticle/5af1c220c095d718d8ec2c84.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇