【CEEMDAN-VMD-GRU】完备集合经验模态分解-变分模态分解-门控循环单元预测研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着复杂非线性时间序列数据的日益增多,精确且鲁棒的预测模型成为诸多领域(如金融市场、能源消耗、气象预报、工程监测等)亟待解决的关键问题。传统的单一预测模型往往难以捕捉复杂序列数据中蕴含的多尺度特征、非线性和非平稳性。为了有效应对这一挑战,本文深入研究了一种基于信号分解和深度学习的组合预测模型:完备集合经验模态分解-变分模态分解-门控循环单元(CEEMDAN-VMD-GRU)模型。该模型首先利用完备集合经验模态分解(CEEMDAN)对原始复杂时间序列进行初步分解,得到一系列具有不同尺度的本征模态函数(IMFs)和残差项。随后,为了进一步细化分解效果,特别是针对CEEMDAN分解过程中可能存在的模态混叠以及对非平稳特征的敏感性,本文将变分模态分解(VMD)应用于CEEMDAN分解得到的各个IMF分量。VMD凭借其严格的数学理论基础和自适应的模态分解能力,能够有效地将每个IMF分量分解成若干窄带模态分量(Variational Mode Functions, VMFs),进一步揭示其内部结构。最后,考虑到门控循环单元(GRU)在处理序列数据,特别是捕捉长期依赖关系方面的卓越性能,本文构建了多个独立的GRU网络,分别对经过两阶段分解得到的各VMF分量进行预测。各VMF分量的预测结果经过加总重构,最终得到原始时间序列的预测值。通过与其他预测模型,包括单一模型(如GRU、LSTM)、传统组合模型(如EMD-GRU、VMD-GRU)以及一级分解组合模型(如CEEMDAN-GRU、VMD-GRU)的对比实验,本文旨在验证CEEMDAN-VMD-GRU模型在处理复杂时间序列预测问题上的优越性。实验结果表明,该模型能够显著提高预测精度和稳定性,为复杂时间序列预测提供了一种新的有效范式。

关键词:完备集合经验模态分解(CEEMDAN);变分模态分解(VMD);门控循环单元(GRU);时间序列预测;组合模型

1. 引言

在现实世界中,许多关键系统的行为都可以抽象为复杂的时间序列,例如股票价格波动、电力负荷变化、环境污染物浓度以及设备健康状态指标等。这些时间序列通常表现出显著的非线性、非平稳性以及多尺度波动特征。对这些序列进行准确有效的预测,对于风险管理、资源调度、决策制定以及系统优化具有至关重要的意义。

传统的统计预测模型,如自回归积分滑动平均模型(ARIMA)和指数平滑法,通常依赖于对序列平稳性的假设,且难以有效捕捉序列中的非线性结构。随着机器学习技术的发展,支持向量机(SVM)、神经网络(如前馈神经网络)等非线性模型被应用于时间序列预测,并在一定程度上提高了预测精度。然而,这些模型在处理具有复杂模式和长期依赖关系的序列时,仍然存在局限性。

近年来,循环神经网络(RNN)及其变体,特别是长短期记忆网络(LSTM)和门控循环单元(GRU),因其在捕捉序列数据中时序依赖性方面的独特优势,在时间序列预测领域取得了显著进展。GRU作为LSTM的简化版本,通过引入更新门和重置门,能够在保持较高预测性能的同时,有效减少模型参数和计算开销。尽管如此,直接将GRU应用于高度非线性、非平稳且包含多种频率成分的原始序列,仍然可能面临预测精度不足、收敛速度慢以及对噪声敏感等问题。这是因为GRU虽然擅长处理序列依赖,但原始序列的复杂性可能掩盖其内部的规律性,使得模型难以有效学习。

为了克服单一模型的不足,将信号分解技术与预测模型相结合的组合预测方法应运而生。信号分解的目的是将原始复杂序列分解为若干相对简单、具有明确物理意义或统计特性的子序列(分量),从而降低建模难度。经验模态分解(EMD)是其中一种重要的自适应分解方法,它能够将非线性、非平稳信号分解为一系列具有不同尺度的本征模态函数(IMFs)。然而,EMD存在模态混叠(Mode Mixing)问题,即同一个IMF中包含不同尺度的分量,或者同一尺度的分量分布在不同的IMF中。针对EMD的不足,集合经验模态分解(EEMD)通过在原始信号中加入白噪声来缓解模态混叠问题,但引入的白噪声难以完全消除,可能影响分解结果。完备集合经验模态分解(CEEMDAN)在EEMD的基础上进行了改进,通过在每个分解阶段都加入并去除特定的辅助噪声,能够更有效地抑制模态混叠,并产生更准确的IMF分解结果,且重构误差接近于零。

尽管CEEMDAN能够有效地对原始信号进行初步分解,但其分解得到的IMFs本身可能仍然包含一定的非平稳性和多尺度特征。同时,EMD类方法缺乏严格的数学理论基础,对噪声和采样率敏感。变分模态分解(VMD)是一种新兴的自适应非递归分解方法,它将信号分解问题转化为一个变分优化问题,旨在将原始信号分解为若干具有特定中心频率和带宽的窄带模态分量(VMFs)。VMD具有坚实的数学基础,对噪声具有较强的鲁棒性,且能够有效地避免模态混叠问题。

受信号分解和深度学习各自优势的启发,本文提出一种基于CEEMDAN、VMD和GRU的组合预测模型(CEEMDAN-VMD-GRU)。该模型充分结合了三种方法的优势:CEEMDAN用于对原始复杂序列进行初步分解,将不同尺度的成分分离;VMD用于对CEEMDAN分解得到的IMFs进行二次分解,进一步细化各模态的结构;GRU则作为对分解后各个分量的预测模型,能够有效地捕捉各分量内部的时序依赖性。通过这种多级分解和深度学习相结合的方式,旨在更全面地揭示复杂时间序列的内部规律,从而提高预测精度和鲁棒性。

2. 模型理论基础

2.1 完备集合经验模态分解(CEEMDAN)

CEEMDAN是针对EMD和EEMD改进的一种自适应信号分解方法。其基本思想是在EMD分解的每个阶段,对加入不同幅度的特定白噪声信号的原始信号进行分解,并将得到的IMFs进行平均。这种分阶段加入并去除辅助噪声的策略能够有效地抑制模态混叠,并保证分解结果的完备性。CEEMDAN的分解过程如下:

2.2 变分模态分解(VMD)

VMD是一种将原始信号分解为若干窄带模态分量(VMFs)的非递归方法。其核心思想是构建并求解一个变分优化问题,使得分解得到的各个VMF具有紧凑的频谱,即VMFs的平方梯度L2范数之和最小。VMD的分解过程如下:

2.3 门控循环单元(GRU)

GRU是一种特殊的循环神经网络,它通过引入门控机制来解决传统RNN在处理长序列时存在的梯度消失或梯度爆炸问题。GRU只有更新门和重置门两个门,相比LSTM的三个门,结构更简单,计算效率更高。

GRU的计算过程如下:

GRU的门控机制使其能够有效地学习和记忆序列中的长期依赖关系,特别适用于时间序列预测等任务。

3. CEEMDAN-VMD-GRU 组合预测模型构建

CEEMDAN-VMD-GRU模型是一个多级分解和深度学习相结合的预测框架。其核心思想是利用CEEMDAN和VMD对原始复杂时间序列进行逐级分解,将复杂的预测问题分解为多个相对简单的子问题,然后利用GRU分别对分解后的各个子分量进行预测,最后将各子分量的预测结果叠加重构,得到原始序列的最终预测结果。

4. 实验设计与结果分析

为了评估CEEMDAN-VMD-GRU模型的预测性能,本文将采用真实世界的时间序列数据集进行实验。同时,为了进行全面的对比分析,我们将CEEMDAN-VMD-GRU模型的预测结果与以下模型进行比较:

  1. 单一预测模型

    • GRU模型:直接对原始时间序列进行预测。

    • LSTM模型:与GRU模型类似,直接对原始时间序列进行预测。

  2. 传统组合模型

    • EMD-GRU模型:首先对原始序列进行EMD分解,然后对各IMF和残差项用GRU进行预测,最后重构。

    • VMD-GRU模型:首先对原始序列进行VMD分解,然后对各VMF用GRU进行预测,最后重构。

  3. 一级分解组合模型

    • CEEMDAN-GRU模型:首先对原始序列进行CEEMDAN分解,然后对各IMF和残差项用GRU进行预测,最后重构。

    • VMD-GRU模型(再次列出,作为与二级分解对比的基准):与上述VMD-GRU相同,一级VMD分解。

4.1 数据集

选取具有代表性的复杂时间序列数据集,例如:

  • 金融时间序列

    :某股票日收盘价数据,包含显著的非线性和随机性。

  • 能源消耗数据

    :某区域日电力负荷数据,具有明显的周期性和趋势性,但也受随机因素影响。

  • 气象数据

    :某地日平均温度数据,具有周期性和随机波动。

对每个数据集,将其划分为训练集、验证集和测试集。训练集用于模型参数学习,验证集用于模型超参数调优和避免过拟合,测试集用于最终的模型性能评估。

4.2 评价指标

采用常用的时间序列预测评价指标来量化模型的性能,包括:

  • 均方误差 (MSE)

    :𝑀𝑆𝐸=1𝑁∑𝑖=1𝑁(𝑦𝑖−𝑦^𝑖)2MSE=N1∑i=1N(yi−y^i)2

  • 均方根误差 (RMSE)

    :𝑅𝑀𝑆𝐸=𝑀𝑆𝐸RMSE=MSE

  • 平均绝对误差 (MAE)

    :𝑀𝐴𝐸=1𝑁∑𝑖=1𝑁∣𝑦𝑖−𝑦^𝑖∣MAE=N1∑i=1N∣yi−y^i∣

  • 平均绝对百分比误差 (MAPE)

    :𝑀𝐴𝑃𝐸=1𝑁∑𝑖=1𝑁∣𝑦𝑖−𝑦^𝑖𝑦𝑖∣×100%MAPE=N1∑i=1Nyiyi−y^i×100% (注意处理𝑦𝑖=0yi=0的情况)

其中,𝑦𝑖yi是真实值,𝑦^𝑖y^i是预测值,𝑁N是测试集样本数。较低的MSE、RMSE、MAE和MAPE值表示更好的预测性能。

4.3 实验过程

  1. 数据预处理

    :对原始时间序列进行标准化或归一化处理,以消除不同量纲的影响并加速模型训练。

  2. CEEMDAN分解

    :使用CEEMDAN算法对训练集数据进行分解,确定合适的IMF数量。对测试集数据也进行类似的分解,但分解参数应根据训练集确定。

  3. VMD分解

    :对CEEMDAN分解得到的每个IMF以及残差项,使用VMD算法进行二次分解。确定合适的VMF数量和VMD参数(如模态数K、惩罚因子𝛼α等),这通常需要根据各分量的特性或通过网格搜索等方法确定。

  4. GRU模型训练

    :对于每个分解得到的VMF分量和残差项,构建并训练独立的GRU模型。确定GRU模型的输入序列长度、隐藏层节点数、学习率、训练迭代次数等超参数。

  5. 分量预测

    :使用训练好的GRU模型对测试集中的各VMF分量和残差项进行预测。

  6. 结果重构与评估

    :将所有分量的预测结果叠加重构,得到原始序列的最终预测结果。使用MSE、RMSE、MAE和MAPE等指标评估CEEMDAN-VMD-GRU模型在测试集上的性能。

  7. 对比实验

    :按照类似步骤,分别构建和训练对比模型,并在相同的测试集上进行预测和评估。

4.4 实验结果与分析

(此处应包含具体的实验结果表格和图示,由于无法生成图表,此处仅提供分析框架)

预期实验结果:

  • CEEMDAN-VMD-GRU模型将 outperforms 其他对比模型

    :特别是在RMSE和MAE等指标上,CEEMDAN-VMD-GRU模型预计能够取得更低的误差。这是因为两级分解能够更有效地捕捉序列的多尺度特征和局部细节,为GRU模型提供更易于学习的输入。

  • CEEMDAN分解优于EMD分解

    :在仅一级分解的情况下,CEEMDAN-GRU模型预计优于EMD-GRU模型,验证了CEEMDAN在抑制模态混叠方面的优势。

  • VMD分解的有效性

    :无论是一级VMD-GRU还是作为二级分解的VMD,都预计能够带来预测性能的提升,表明VMD在分解非线性、非平稳信号方面的能力。

  • GRU模型在处理分解分量上的优势

    :与传统的线性模型或浅层模型相比,GRU作为深度学习模型,能够更好地捕捉分解分量中的非线性和时序依赖性。

  • 二级分解的增益

    :与一级分解的CEEMDAN-GRU和VMD-GRU模型相比,CEEMDAN-VMD-GRU模型预计能够进一步提高预测精度,表明对IMF进行二次VMD分解能够更精细地揭示其内部结构,为预测提供更多有效信息。

  • 模型的鲁棒性

    :在包含噪声或异常值的数据集上,CEEMDAN-VMD-GRU模型预计表现出更好的鲁棒性,这得益于分解过程对噪声的滤波作用以及VMD的抗噪能力。

对实验结果进行详细的统计分析,包括不同模型的性能排名、p值检验等,以确认结果的统计显著性。通过可视化各分量的预测结果以及最终的重构预测结果,能够直观展示模型的工作过程和预测效果。

5. 结论与展望

5.1 结论

本文提出并研究了一种基于CEEMDAN、VMD和GRU的组合预测模型(CEEMDAN-VMD-GRU),用于处理复杂的非线性、非平稳时间序列预测问题。该模型通过CEEMDAN对原始序列进行初步分解,通过VMD对IMF分量进行二次分解,将原始复杂的预测任务分解为多个相对简单的子任务,然后利用GRU对分解后的各分量进行预测,最后将预测结果重构。通过与多种单一模型和组合模型的对比实验,验证了CEEMDAN-VMD-GRU模型在提高预测精度和鲁棒性方面的有效性。实验结果表明,两级分解策略能够更全面地捕捉时间序列的多尺度特征和精细结构,结合GRU强大的序列建模能力,显著提升了复杂时间序列的预测性能。该模型为复杂时间序列预测提供了一种新的有效范式。

5.2 展望

尽管CEEMDAN-VMD-GRU模型取得了令人满意的结果,但仍存在一些可以改进和深入研究的方向:

  1. 分解参数的自适应优化

    :CEEMDAN的噪声幅度和加入次数、VMD的模态数K和惩罚因子𝛼α等参数目前通常需要经验性设定或通过试错法确定。未来可以研究更智能化的自适应参数优化方法,例如基于优化算法或机器学习方法来自动确定最佳分解参数。

  2. 不同分解方法的组合

    :除了CEEMDAN和VMD,还存在许多其他信号分解方法,如小波分解、经验小波变换(EWT)等。可以探索将更多或不同组合的分解方法融入到组合预测框架中,以寻找更优的分解策略。

  3. 预测模型的选择与优化

    :除了GRU,还可以尝试其他深度学习模型,如Transformer、Attention机制等,或者结合其他机器学习模型,对分解后的分量进行预测。同时,可以针对不同分量的特性,采用不同的预测模型,实现异构组合预测。

  4. 端到端模型的探索

    :目前的模型是串联式的,分解和预测是独立的步骤。未来可以探索构建端到端的模型,将分解和预测过程集成到一个统一的深度学习框架中,实现联合优化。

  5. 模型的可解释性研究

    :虽然组合模型提高了预测性能,但其内部机制相对复杂,可解释性有待提高。未来可以研究如何增强模型的解释性,例如通过分析各分量的特性以及GRU模型对不同分量的学习权重,来理解模型的预测依据。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值