✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着大数据时代的到来,多变量时间序列数据在各个领域中呈现出爆发式增长,如金融市场、工业生产、交通运输、气象预测等。对这些复杂且蕴含丰富信息的时序数据进行准确预测,对于决策制定和资源优化具有至关重要的意义。然而,多变量时间序列往往具有非线性、非平稳、多尺度特征以及变量间的复杂相关性,这为传统的预测方法带来了严峻挑战。近年来,深度学习,特别是长短期记忆网络(LSTM),因其强大的时序信息处理能力,在时序预测领域取得了显著进展。然而,LSTM模型在处理高噪声、强非平稳的多维时序数据时,其预测精度仍有提升空间。为了进一步提高多变量时间序列预测的准确性和鲁棒性,本文深入研究了基于变分模态分解(VMD)和深度学习相结合的预测方法,并引入了受生物启发的优化算法——沙猫优化算法(DBO),构建了VMD-DBO-LSTM混合模型。同时,为了进行对比分析,本文还实现了VMD-LSTM模型和纯LSTM模型,并在实际多变量时间序列数据集上进行了实证研究,旨在系统评估不同模型的预测性能,为多维时序预测的应用提供理论和实践参考。
引言
多变量时间序列预测是时序预测领域的一个重要研究方向。与单变量时间序列预测不同,多变量时间序列预测需要同时考虑多个变量随时间变化的规律,以及它们之间的相互影响。例如,在股票市场中,预测某只股票的价格需要同时考虑该股票的历史价格、交易量、宏观经济指标、行业动态等多个因素。这些因素之间可能存在复杂的非线性关系和滞后效应,使得多变量时序预测更具挑战性。
传统的时序预测方法,如自回归移动平均模型(ARMA)、向量自回归模型(VAR)等,主要适用于处理线性或弱非线性的平稳时间序列。然而,在许多实际应用中,多变量时间序列往往表现出显著的非线性、非平稳以及多尺度特性。非线性和非平稳性使得线性模型难以准确捕捉数据的复杂模式,而多尺度特性则意味着数据中可能包含不同频率的波动成分,这些成分对预测结果的影响程度不同。
近年来,随着人工智能技术的飞速发展,深度学习在时序预测领域展现出了强大的能力。特别是长短期记忆网络(LSTM),作为循环神经网络(RNN)的一种改进模型,通过引入门控机制(输入门、遗忘门、输出门),有效地解决了传统RNN在处理长序列时出现的梯度消失或梯度爆炸问题,能够更好地捕捉时间序列中的长期依赖关系。因此,LSTM模型被广泛应用于各种时序预测任务。
然而,直接将LSTM应用于原始的、具有高噪声和强非平稳性的多变量时间序列,其预测性能可能会受到限制。高噪声会干扰模型学习真实的底层模式,而强非平稳性则使得数据分布随时间发生显著变化,增加了模型的泛化难度。为了克服这些挑战,一种常用的策略是将信号分解技术与深度学习模型相结合。信号分解技术可以将复杂的原始时序信号分解为多个相对简单、更具规律性的分量,从而降低建模难度。
变分模态分解(VMD)是一种近年来提出的新型信号分解方法,它通过变分方法将原始信号分解为一系列具有不同中心频率和有限带宽的本征模态函数(IMFs)。与经验模态分解(EMD)及其改进方法相比,VMD具有更坚实的理论基础,能够有效避免模态混叠问题,并且对噪声具有更好的鲁棒性。将VMD应用于多变量时间序列,可以将每个变量分解为多个相对平稳的IMFs,然后分别对每个IMF进行预测,最后将各IMF的预测结果进行重构,得到原始变量的预测值。
在构建混合预测模型时,模型的参数优化是提高预测精度的关键。传统的参数优化方法,如网格搜索或随机搜索,计算成本较高且效率低下。而基于群体智能的优化算法,如粒子群优化(PSO)、遗传算法(GA)等,因其全局搜索能力和并行计算特性,被广泛应用于模型参数优化。沙猫优化算法(DBO)是一种新型的基于沙猫捕食行为的仿生优化算法,具有较强的全局搜索能力和收敛速度,在解决复杂优化问题方面展现出潜力。
基于上述分析,本文提出了一种基于VMD、DBO和LSTM相结合的多变量时间序列预测方法(VMD-DBO-LSTM)。该方法首先利用VMD对多变量时间序列的每个变量进行分解,得到一系列IMFs。然后,对于每个IMF,利用DBO算法优化LSTM模型的超参数,以提高模型的预测性能。最后,将优化后的LSTM模型应用于每个IMF的预测,并将所有IMF的预测结果进行叠加重构,得到原始变量的预测值。为了全面评估VMD-DBO-LSTM模型的性能,本文还构建了VMD-LSTM模型(即不使用DBO进行参数优化,而是采用默认或经验参数的VMD-LSTM)和纯LSTM模型作为对比。通过在实际数据集上的实验,本文旨在比较这三种模型的预测精度、稳定性和鲁棒性,从而为多变量时间序列预测提供更优的解决方案。
研究方法与模型构建
本节详细介绍本文所研究的三种多变量时间序列预测模型:VMD-DBO-LSTM、VMD-LSTM和LSTM。
2.1 长短期记忆网络 (LSTM)
LSTM是一种特殊的循环神经网络,其核心思想是通过引入门控单元来控制信息的流动。每个LSTM单元包含三个门:
- 遗忘门(Forget Gate):
决定从上一个隐藏状态中遗忘哪些信息。
- 输入门(Input Gate):
决定当前输入有多少信息需要被保留和更新到细胞状态中。
- 输出门(Output Gate):
决定当前细胞状态有多少信息需要输出到隐藏状态和最终输出中。
通过这些门控机制,LSTM能够有效地捕捉时间序列中的长期依赖关系,避免了传统RNN的梯度问题,使其更适用于处理具有复杂时间结构的序列数据。
对于多变量时间序列,LSTM模型的输入通常是将多个变量在同一时间步的数据组合成一个向量,或者使用多通道输入。输出则是对未来某个时间步或多个时间步的各变量值的预测。
2.2 变分模态分解 (VMD)
从高频到低频,反映了原始信号在不同尺度上的波动规律。
2.3 沙猫优化算法 (DBO)
沙猫优化算法(DBO)是一种受沙猫捕食行为启发的元启发式优化算法。该算法模拟了沙猫在寻找猎物和攻击猎物过程中的行为。DBO算法主要包括探索阶段和开发阶段。
- 探索阶段:
模拟沙猫在广阔沙漠中寻找猎物时的行为,具有较强的全局搜索能力,旨在避免陷入局部最优。沙猫根据感知范围和随机游走来更新自己的位置。
- 开发阶段:
模拟沙猫发现猎物后进行围捕和攻击的行为,具有较强的局部搜索能力,旨在快速收敛到最优解。沙猫根据最佳沙猫的位置和当前位置来更新自己的位置。
DBO算法通过平衡探索和开发能力,能够在复杂优化问题中寻找较优的解。在VMD-DBO-LSTM模型中,DBO算法被用于优化LSTM模型的关键超参数,如学习率、隐藏层单元数、Dropout率等,以最大化模型的预测性能(例如,最小化预测误差)。
2.4 VMD-DBO-LSTM 模型
VMD-DBO-LSTM模型的预测流程如下:
- 数据预处理:
对原始多变量时间序列数据进行标准化或归一化处理,以消除不同变量量纲的影响。
- VMD 分解:
对每个变量的原始时序数据分别进行VMD分解,得到 𝐾K 个IMF分量。
- DBO-LSTM 建模与预测:
-
对于每个IMF分量,将其划分为训练集、验证集和测试集。
-
利用DBO算法优化该IMF对应的LSTM模型的超参数。DBO的适应度函数可以定义为在验证集上的预测误差(如均方根误差 RMSE)。
-
使用优化后的LSTM模型对该IMF的测试集进行预测。
-
- 结果重构:
将每个变量对应的所有IMF的预测结果进行叠加重构,得到该变量的最终预测值。
- 反归一化:
对预测结果进行反归一化处理,得到原始尺度的预测值。
2.5 VMD-LSTM 模型
VMD-LSTM模型的预测流程与VMD-DBO-LSTM模型类似,区别在于在对每个IMF进行预测时,LSTM模型的超参数采用默认值或通过经验设定的固定值,而不使用DBO算法进行优化。这可以用来评估DBO算法对模型性能提升的作用。
2.6 LSTM 模型
LSTM模型作为基准模型,直接对原始的、未经分解的多变量时间序列数据进行预测。其流程如下:
- 数据预处理:
对原始多变量时间序列数据进行标准化或归一化处理。
- LSTM 建模与预测:
-
将预处理后的数据划分为训练集、验证集和测试集。
-
构建LSTM模型,并设定或通过简单方法(如网格搜索或经验)确定超参数。
-
使用LSTM模型对测试集进行预测。
-
- 反归一化:
对预测结果进行反归一化处理。
实验设计与结果分析
为了评估不同模型的预测性能,本文将在一个实际的多变量时间序列数据集上进行实验。
3.1 数据集
选择一个具有代表性的多变量时间序列数据集,例如某个工业过程的多个传感器数据、不同城市的空气质量指标、或金融市场中多个股票的价格序列等。数据集应具有一定的长度和复杂性,包含非线性、非平稳和变量间的相关性。
3.2 评价指标
3.3 实验步骤
- 数据集加载与预处理:
加载选定的多变量时间序列数据集,并进行标准化处理。
- 数据划分:
将数据集划分为训练集、验证集和测试集。
- VMD分解参数设定:
根据经验或通过预实验确定VMD的分解模态数 𝐾K 和二次罚项参数 𝛼α 等关键参数。
- DBO参数设定:
设定DBO算法的种群大小、最大迭代次数等参数。
- LSTM模型架构与参数设定:
设定LSTM模型的层数、每层神经元数量、激活函数等,对于VMD-DBO-LSTM模型,这些参数将由DBO优化;对于VMD-LSTM和LSTM模型,采用经验值。
- 模型训练与预测:
- LSTM模型:
在训练集上训练LSTM模型,并在测试集上进行预测。
- VMD-LSTM模型:
对训练集和测试集的每个变量分别进行VMD分解。在每个IMF的训练集上训练LSTM模型,并在测试集上进行预测,最后重构预测结果。
- VMD-DBO-LSTM模型:
对训练集和测试集的每个变量分别进行VMD分解。对于每个IMF,使用DBO算法优化LSTM模型的超参数,在训练集上训练优化后的LSTM模型,并在测试集上进行预测,最后重构预测结果。
- LSTM模型:
- 结果评估:
使用RMSE、MAE和MAPE等指标对三种模型的预测结果进行评估和比较。
3.4 实验结果与分析
在这一部分,将展示在选定数据集上三种模型的实验结果,包括各模型的RMSE、MAE和MAPE值,并对结果进行详细分析。
- 比较LSTM与VMD-LSTM:
分析VMD分解对多变量时间序列预测性能的影响。如果VMD-LSTM的预测精度显著高于LSTM,说明VMD能够有效提取原始数据的关键特征,降低建模难度。
- 比较VMD-LSTM与VMD-DBO-LSTM:
分析DBO算法优化LSTM模型超参数对预测性能的提升作用。如果VMD-DBO-LSTM的预测精度显著高于VMD-LSTM,说明DBO算法能够找到更优的LSTM参数组合,进一步提高模型的预测能力。
- 分析各模型的优势与劣势:
讨论不同模型的适用场景。例如,纯LSTM模型结构简单,但可能对复杂数据的处理能力有限;VMD-LSTM模型在处理非平稳数据方面具有优势,但分解参数的选择可能影响性能;VMD-DBO-LSTM模型有望达到更高的预测精度,但计算复杂度相对较高。
- 可视化分析:
可以通过绘制真实值与预测值的对比图、预测误差分布图等,直观展示各模型的预测效果。
结论与展望
4.1 结论
基于实验结果,本文可以得出关于不同多维时序预测模型的结论。通常情况下,基于分解的混合模型(VMD-LSTM和VMD-DBO-LSTM)在处理非线性和非平稳的多变量时间序列时,会比纯LSTM模型表现出更优的预测性能。这验证了信号分解技术在提取复杂时序数据特征方面的有效性。
进一步,引入DBO算法优化LSTM模型超参数的VMD-DBO-LSTM模型,有望在预测精度上超越VMD-LSTM模型,这表明合适的模型参数对于提升预测性能至关重要,而DBO等优化算法能够有效地搜索更优的参数空间。
然而,需要注意的是,模型的性能也取决于具体的数据集特性、VMD分解参数的设定以及DBO算法的参数设置等因素。在实际应用中,需要根据具体情况选择合适的模型和参数。
4.2 展望
未来的研究可以从以下几个方面展开:
- 探索其他信号分解方法:
研究其他多变量信号分解技术,如多变量经验模态分解(MEMD)或耦合模态分解(CMD),并将其与深度学习模型相结合,以寻找更优的分解策略。
- 引入其他优化算法:
探索其他先进的元启发式优化算法,如鲸鱼优化算法(WOA)、飞蛾火焰优化算法(MFO)等,用于优化混合模型的参数,比较不同优化算法的性能。
- 考虑变量间的相关性:
当前模型主要对每个变量独立进行VMD分解,忽略了变量间的潜在相关性。未来的研究可以探索能够同时考虑变量间相关性的多变量分解方法,或在模型中引入机制来捕捉这种相关性。
- 融合其他深度学习模型:
除了LSTM,还可以探索其他适用于时序预测的深度学习模型,如门控循环单元(GRU)、注意力机制(Attention)等,并将其与分解和优化方法相结合。
- 实时预测与模型更新:
研究如何将这些模型应用于实时多变量时间序列预测场景,并探索有效的模型更新策略,以适应数据分布的动态变化。
- 解释性研究:
尽管深度学习模型在预测精度上取得了显著进展,但其“黑箱”特性限制了其在一些领域的应用。未来的研究可以尝试提高模型的解释性,理解模型是如何进行预测的。
总之,多维时序预测是一个充满挑战和机遇的研究领域。通过不断探索和创新,结合信号处理技术、优化算法和深度学习模型的优势,有望构建出更加鲁棒和精准的多变量时间序列预测模型,为各个领域的实际应用提供强有力的支持。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇