✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
一、研究背景
在智能优化算法领域,蚁群优化算法以其独特的仿生学原理和自组织特性,在组合优化、路径规划等众多领域得到广泛应用。连续蚁群优化算法(ACOR)作为蚁群优化算法的一种变体,因结构简单、控制参数少,在连续优化问题求解中展现出一定优势。但随着实际应用场景日益复杂,多峰和高维优化问题不断涌现,ACOR 算法在处理此类问题时暴露出明显缺陷,其容易陷入可行域空间的局部区域,难以跳出局部最优,导致计算效率低下,无法快速准确地找到全局最优解。因此,亟需对 ACOR 算法进行改进,以提升其在复杂优化问题中的性能表现,而本文提出的随机跟随蚁群优化算法(RFACO)正是为解决这一问题而生。
二、连续蚁群优化算法(ACOR)的局限性
ACOR 算法通过模拟蚁群在觅食过程中释放和感知信息素的行为,引导蚁群搜索代理在解空间中寻找最优解。在搜索初期,蚁群凭借信息素的指引,能够快速探索解空间,找到一些较优解。然而,当面对多峰优化问题时,由于多个局部最优峰的存在,蚁群搜索代理容易被局部最优解附近较高的信息素浓度吸引,一旦陷入局部最优区域,便难以跳出,从而错失全局最优解。在高维优化问题中,解空间维度的增加使得搜索空间急剧膨胀,信息素的引导作用被削弱,蚁群搜索代理在广阔的解空间中盲目搜索,不仅耗费大量计算资源,而且极易陷入局部最优区域,导致算法的收敛速度变慢,优化精度降低 。
三、随机跟随策略与 RFACO 算法原理
3.1 随机跟随策略
随机跟随策略的核心思想是增强蚁群搜索代理之间的交流与协作,打破蚁群搜索代理因过度依赖局部信息素而陷入局部最优的困境。在算法执行过程中,每个蚁群搜索代理在更新自身位置时,不再仅仅依据当前自身所感知到的信息素浓度,而是以一定的概率随机选择一个其他蚁群成员作为跟随对象,根据该跟随对象的位置信息对自身位置进行调整。这种随机选择跟随对象的方式,使得蚁群搜索代理能够获取更广泛的解空间信息,避免因信息局限而陷入局部最优。例如,当某个蚁群搜索代理陷入局部最优区域时,通过随机跟随其他蚁群成员,有可能跳出该局部区域,进入新的搜索区域,从而增加找到全局最优解的机会。
3.2 RFACO 算法流程
- 初始化:设定算法的基本参数,包括蚁群规模、最大迭代次数、信息素初始浓度等;在可行解空间内随机生成蚁群搜索代理的初始位置。
- 目标函数计算:根据每个蚁群搜索代理的当前位置,计算其对应的目标函数值,评估解的优劣。
- 信息素更新:按照传统 ACOR 算法的信息素更新规则,根据蚁群搜索代理找到的解的质量,对解空间中的信息素进行更新,优质解路径上的信息素浓度增加,反之则减少。
- 随机跟随操作:每个蚁群搜索代理以预先设定的随机跟随概率,判断是否执行随机跟随操作。若执行,则从其他蚁群成员中随机选择一个作为跟随对象,根据跟随对象的位置和一定的跟随规则,对自身位置进行更新;若不执行,则按照 ACOR 算法原有的位置更新规则进行位置更新。
- 判断终止条件:检查是否达到最大迭代次数或满足其他终止条件,若未达到,则返回步骤 2 继续迭代;若达到,则输出当前找到的最优解作为算法结果。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] Zhou X, Gui W, Heidari A A, et al. Random following ant colony optimization: Continuous and binary variants for global optimization and feature selection[J]. Applied Soft Computing, 2023, 144: 110513.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类