✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
随着社会经济的发展和能源需求的增长,准确预测用电需求对于电力系统的稳定运行和优化管理至关重要。近年来,深度学习技术在用电需求预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)因其强大的特征提取能力而被广泛应用。然而,传统的CNN-GRU模型在处理时间序列数据时往往忽略了不同时间步长之间的依赖关系,导致预测精度有限。为了克服这一局限性,本文提出了一种基于牛顿拉夫逊优化算法(NRBO)的改进模型NRBO-CNN-GRU-Attention,该模型结合了CNN、GRU和注意力机制,并利用NRBO算法优化模型参数,进一步提升用电需求预测的准确性。本文使用Matlab语言实现了NRBO-CNN-GRU-Attention模型,并基于真实数据集进行实验验证,结果表明该模型在预测精度和稳定性方面均优于其他对比模型。
关键词: 用电需求预测,牛顿拉夫逊优化算法,卷积神经网络,门控循环单元,注意力机制,Matlab
1. 引言
用电需求预测是电力系统规划、调度和运行的关键环节,准确预测用电需求可以有效提高电力系统的运行效率,降低运营成本,确保电力供应的可靠性和稳定性。近年来,随着社会经济的发展和用电设备的普及,用电需求呈现出日益复杂的趋势,传统预测方法难以满足实际需求。深度学习技术的出现为用电需求预测提供了新的思路和方法,其强大的特征提取能力和非线性拟合能力可以有效处理复杂的数据模式,提高预测精度。
卷积神经网络(CNN)和门控循环单元(GRU)是两种常用的深度学习模型,它们在时间序列数据分析和预测方面展现出优异的性能。CNN擅长提取局部特征,而GRU可以有效捕捉时间序列数据的长程依赖关系。然而,传统的CNN-GRU模型在处理时间序列数据时往往忽略了不同时间步长之间的依赖关系,导致预测精度有限。
注意力机制的引入可以有效解决上述问题,它可以根据不同时间步长的重要程度分配不同的权重,从而更加关注对预测结果影响较大的时间步长,提升模型的预测精度。同时,为了进一步优化模型参数,本文采用牛顿拉夫逊优化算法(NRBO)对模型进行训练,以提高模型的收敛速度和预测精度。
2. 模型介绍
2.1 NRBO-CNN-GRU-Attention模型结构
本文提出的NRBO-CNN-GRU-Attention模型主要由以下几个部分组成:
-
卷积层(Convolutional Layer): 利用卷积操作提取输入数据中的局部特征,并通过池化操作降低特征维度,提升模型的泛化能力。
-
门控循环单元层(GRU Layer): 使用GRU单元捕捉时间序列数据的长程依赖关系,并根据时间步长进行特征提取,提高模型的记忆能力。
-
注意力机制层(Attention Layer): 通过注意力机制对不同时间步长的特征进行加权,赋予重要特征更高的权重,从而提高模型的预测精度。
-
牛顿拉夫逊优化算法(NRBO): 利用NRBO算法对模型参数进行优化,提高模型的收敛速度和预测精度。
2.2 模型训练过程
模型训练过程主要包括以下步骤:
-
数据预处理: 将原始数据进行清洗和预处理,并将其转化为模型可识别的格式。
-
模型初始化: 初始化模型参数,包括卷积核、GRU参数、注意力机制权重等。
-
数据输入: 将预处理后的数据输入模型,并利用CNN和GRU层提取特征。
-
注意力机制计算: 计算不同时间步长的特征权重,并根据权重对特征进行加权。
-
模型预测: 利用模型预测未来时刻的用电需求。
-
损失函数计算: 计算模型预测结果与真实值之间的误差。
-
参数优化: 利用NRBO算法对模型参数进行优化,减小模型误差。
-
重复步骤3-7,直到模型收敛或达到预设训练轮次。
3. Matlab实现
3.1 数据集
本文使用某地区真实的用电需求数据进行实验验证,数据集包含历史用电需求数据和相关影响因素数据,例如气温、湿度、时间等。
实验结果
实验结果表明,本文提出的NRBO-CNN-GRU-Attention模型在预测精度和稳定性方面均优于其他对比模型,例如传统的CNN-GRU模型和基于LSTM的模型。
4. 结论
本文提出了一种基于牛顿拉夫逊优化算法的改进模型NRBO-CNN-GRU-Attention,该模型结合了CNN、GRU和注意力机制,并利用NRBO算法优化模型参数,有效提升了用电需求预测的准确性。实验结果表明,该模型在预测精度和稳定性方面均优于其他对比模型。未来研究将进一步探索更有效的模型结构和优化算法,以进一步提升用电需求预测的精度和效率。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类