【SCI2区】阿基米德优化算法AOA-CNN-GRU-Attention用电需求预测Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

摘要

随着经济社会发展和人们生活水平提高,用电需求不断增长,准确预测用电需求对电力系统安全稳定运行至关重要。近年来,深度学习技术在用电需求预测领域取得了显著进展,但现有方法在处理非线性时间序列数据和捕捉复杂时序特征方面仍存在不足。本文提出了一种基于阿基米德优化算法(AOA)的卷积神经网络-门控循环神经网络-注意力机制 (CNN-GRU-Attention) 融合模型,用于提高用电需求预测精度。该模型利用CNN提取数据的空间特征,GRU捕捉时间特征,注意力机制关注重要特征,AOA对模型参数进行优化,最终实现对用电需求的精准预测。实验结果表明,与其他预测模型相比,该模型在预测精度和稳定性方面均取得显著提升,并具备较强的泛化能力。

关键词:用电需求预测,阿基米德优化算法,卷积神经网络,门控循环神经网络,注意力机制,Matlab实现

1. 引言

电力系统是国民经济的重要基础设施,用电需求预测是电力系统安全稳定运行的关键环节。准确预测用电需求,有利于电力系统规划、调度和管理,有效提升电网运行效率和经济效益。

传统用电需求预测方法主要包括统计分析方法、灰色预测方法和神经网络方法。统计分析方法利用历史数据进行分析,但受限于数据样本量和模型复杂度,难以捕捉数据中的复杂非线性特征;灰色预测方法通过建立灰色模型进行预测,但其精度较低,且对数据要求较高;神经网络方法近年来发展迅速,其强大的非线性映射能力能够有效捕捉数据中的复杂特征,但在处理时间序列数据方面存在缺陷,难以有效捕捉数据中的时序特征。

为了克服上述缺陷,近年来,深度学习技术被广泛应用于用电需求预测领域。深度学习模型能够从海量数据中学习复杂特征,并进行精准预测。其中,卷积神经网络 (CNN) 擅长提取数据的空间特征,门控循环神经网络 (GRU) 擅长捕捉时间特征,注意力机制 (Attention) 能够有效地关注重要特征,这些技术的结合为用电需求预测提供了新的思路。

然而,深度学习模型参数众多,模型训练过程容易陷入局部最优,导致预测精度下降。因此,需要一种有效的优化算法对模型参数进行优化,以提升模型性能。本文提出一种基于阿基米德优化算法 (AOA) 的 CNN-GRU-Attention 融合模型,利用 AOA 的全局搜索能力,对模型参数进行优化,最终实现对用电需求的精准预测。

2. 模型介绍

2.1 阿基米德优化算法 (AOA)

AOA 是一种新型的元启发式优化算法,其灵感来源于古希腊数学家阿基米德的杠杆原理。AOA 算法通过模拟杠杆原理,将优化问题转化为平衡杠杆的过程,并根据杠杆的平衡状态来更新解的搜索方向,最终找到最优解。

2.2 CNN-GRU-Attention 模型

本文提出的 CNN-GRU-Attention 模型由三个主要部分组成:卷积神经网络 (CNN)、门控循环神经网络 (GRU) 和注意力机制 (Attention)。

  • CNN 模块:利用卷积操作提取数据的空间特征,并通过池化操作降低特征维度。

  • GRU 模块:利用 GRU 捕捉数据中的时间特征,并根据历史数据进行预测。

  • Attention 模块:利用注意力机制关注重要的特征,并抑制无关特征,提升模型的预测精度。

3. 实验与结果

3.1 数据集

本文使用某地区 2019 年至 2022 年的用电需求数据作为训练和测试数据集。

3.2 实验结果

实验结果表明,本文提出的 AOA-CNN-GRU-Attention 模型在预测精度和稳定性方面均取得显著提升。与其他预测模型相比,该模型的均方根误差 (RMSE) 和平均绝对误差 (MAE) 均更低,说明模型的预测精度更高;同时,模型的预测结果更加稳定,说明模型的泛化能力更强。

3.3 实验结论

本文提出的 AOA-CNN-GRU-Attention 模型能够有效提高用电需求预测精度,其优势体现在:

  • AOA 的全局搜索能力可以有效优化模型参数,提高模型性能。

  • CNN-GRU-Attention 模型能够有效捕捉数据的空间和时间特征,并利用注意力机制关注重要特征。

  • 模型的预测精度和稳定性均优于其他预测模型。

4. 结论

本文提出了一种基于 AOA 的 CNN-GRU-Attention 融合模型,用于提高用电需求预测精度。实验结果表明,该模型在预测精度和稳定性方面均取得显著提升,并具备较强的泛化能力。该模型为电力系统用电需求预测提供了新的思路和方法,具有重要的理论和应用价值。

5. 未来工作

未来工作将着重于以下几个方面:

  • 研究更有效的优化算法,进一步提升模型性能。

  • 探索其他深度学习模型,以提高模型预测精度和稳定性。

  • 将该模型应用于实际电力系统中,进行进一步验证和优化。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

阿基米德算法优化的BP(Back Propagation,反向传播)神经网络在故障识别数据分类中的应用称为AOA-BP(Adaptive Optimal Annealing Back Propagation)。其原理和流程主要包括以下几个步骤: 1. **模型初始化**:首先建立一个BP神经网络,包含输入层、隐藏层和输出层。每个节点通常采用Sigmoid函数作为激活函数。 2. **预处理数据**:对故障识别的数据集进行预处理,包括归一化或标准化,以便让网络更好地学习特征。 3. **训练过程**:利用阿基米德优化算法(如模拟退火法的一种变种),改进了传统的BP算法AOA通过自适应地调整学习速率,防止陷入局部最优,并增加全局搜索的能力,帮助网络更高效地寻找权重的最佳组合。 4. **适应性温度控制**:AOA-BP会随着迭代次数降低逐渐减小“温度”,模拟物质冷却过程中原子排列的优化过程,使得权重更新更加精准。 5. **前向传播和反向传播**:在每次迭代中,先进行前向传播计算预测值,然后根据实际结果和预测之间的误差进行反向传播,调整各节点之间的连接权重。 6. **错误分析与权重更新**:根据反向传播得到的梯度信息,更新神经元的权重,这个过程不断迭代直至网络性能达到预期或达到预设的最大迭代次数。 7. **测试与验证**:在训练完成后,用未见过的测试数据评估模型的泛化能力,检查分类效果是否良好。 8. **诊断和决策**:当新的故障数据输入网络,经过处理后,输出对应类别的概率,最终进行故障类别判断。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值