【SCI一区】Matlab 实现阿基米德优化算法 AOA-CNN-LSTM-Attention 的风电功率预测算法研究

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要

风电功率预测是提高风电场运行效率、稳定电网运行的关键环节。本文提出了一种基于阿基米德优化算法 (AOA) 优化的卷积神经网络 (CNN)、长短期记忆网络 (LSTM) 和注意力机制 (Attention) 的风电功率预测模型 (AOA-CNN-LSTM-Attention)。该模型利用 AOA 优化 CNN-LSTM-Attention 模型中的超参数,通过 CNN 提取风电功率序列的时空特征,LSTM 学习时间序列的长期依赖关系,Attention 机制关注关键时间特征,最终实现对风电功率的高精度预测。在真实风电场数据上的实验结果表明,与其他预测模型相比,本文提出的 AOA-CNN-LSTM-Attention 模型在预测精度方面取得了显著提升,验证了该模型的有效性和优越性。

关键词: 风电功率预测,阿基米德优化算法,卷积神经网络,长短期记忆网络,注意力机制

1. 引言

近年来,随着全球能源结构调整和可再生能源的快速发展,风力发电作为清洁能源的重要组成部分,在电力系统中扮演着越来越重要的角色。然而,风能具有间歇性和波动性等特点,给风电功率预测带来了巨大的挑战。准确预测风电功率对于提高风电场运行效率、稳定电网运行以及优化电力调度具有重要意义。

传统的风电功率预测方法主要包括统计方法、物理模型和人工智能方法。统计方法,例如自回归移动平均模型 (ARMA) 和自回归积分移动平均模型 (ARIMA),简单易行,但对非线性关系的表达能力有限。物理模型,例如风能资源评估模型和风机模型,可以考虑风力发电系统的物理特性,但模型复杂,需要大量参数和数据。人工智能方法,例如神经网络、支持向量机和模糊逻辑,近年来得到了广泛应用,具有较强的非线性映射能力,能够学习数据中的复杂关系。

近年来,深度学习技术在风电功率预测领域取得了显著进展,一些基于深度神经网络的预测模型被提出,例如卷积神经网络 (CNN) 和循环神经网络 (RNN)。CNN 擅长提取空间特征,RNN 擅长学习时间序列的长期依赖关系,但单独使用 CNN 或 RNN 无法同时兼顾时空特征和时间依赖关系。为了克服这一问题,研究人员将 CNN 和 RNN 结合使用,提出了 CNN-LSTM 模型,该模型能够同时提取时空特征和时间依赖关系,在风电功率预测方面取得了优异的效果。

然而,CNN-LSTM 模型的预测性能受超参数的影响很大。超参数的优化问题是一个 NP 难问题,传统优化算法,例如梯度下降法,容易陷入局部最优解。为了解决这个问题,近年来出现了一些新的优化算法,例如粒子群优化算法 (PSO)、遗传算法 (GA) 和差分进化算法 (DE),这些算法具有较强的全局搜索能力,能够有效地优化 CNN-LSTM 模型的超参数,提升模型的预测精度。

本文提出了一种基于阿基米德优化算法 (AOA) 优化的 CNN-LSTM-Attention 风电功率预测模型。AOA 是一种新型的元启发式优化算法,具有收敛速度快、全局搜索能力强等优点。该模型利用 AOA 优化 CNN-LSTM-Attention 模型中的超参数,通过 CNN 提取风电功率序列的时空特征,LSTM 学习时间序列的长期依赖关系,Attention 机制关注关键时间特征,最终实现对风电功率的高精度预测。

2. 相关工作

近年来,深度学习技术在风电功率预测领域得到了广泛应用,涌现出许多优秀的预测模型。文献 [1] 提出了基于 CNN 的风电功率预测模型,该模型利用 CNN 提取风电功率序列的空间特征,但忽略了时间序列的长期依赖关系。文献 [2] 提出了基于 LSTM 的风电功率预测模型,该模型能够学习时间序列的长期依赖关系,但无法提取空间特征。文献 [3] 将 CNN 和 LSTM 结合使用,提出了 CNN-LSTM 模型,该模型能够同时提取时空特征和时间依赖关系,在风电功率预测方面取得了优异的效果。

然而,CNN-LSTM 模型的预测性能受超参数的影响很大,超参数的优化问题是一个 NP 难问题。文献 [4] 利用 PSO 优化 CNN-LSTM 模型的超参数,提升了模型的预测精度。文献 [5] 利用 GA 优化 CNN-LSTM 模型的超参数,提高了模型的泛化能力。

本文提出了一种基于 AOA 优化的 CNN-LSTM-Attention 风电功率预测模型,该模型利用 AOA 优化 CNN-LSTM-Attention 模型中的超参数,通过 CNN 提取风电功率序列的时空特征,LSTM 学习时间序列的长期依赖关系,Attention 机制关注关键时间特征,最终实现对风电功率的高精度预测。

3. 模型结构

本文提出的 AOA-CNN-LSTM-Attention 模型结构如图 1 所示,主要包括以下几个部分:

  • 数据预处理: 对原始风电功率数据进行归一化处理,并将数据分成训练集、验证集和测试集。
  • 卷积神经网络 (CNN): CNN 采用多个卷积层和池化层,提取风电功率序列的时空特征。
  • 长短期记忆网络 (LSTM): LSTM 能够学习时间序列的长期依赖关系,并输出预测结果。
  • 注意力机制 (Attention): Attention 机制能够关注关键时间特征,提升模型的预测精度。
  • 阿基米德优化算法 (AOA): AOA 用于优化 CNN-LSTM-Attention 模型的超参数,包括卷积核大小、卷积层数量、LSTM 隐藏层神经元数量、Attention 层参数等。

图 1:AOA-CNN-LSTM-Attention 模型结构

3.1 卷积神经网络 (CNN)

CNN 是一种前馈神经网络,擅长提取数据的空间特征。它主要由卷积层、池化层和全连接层组成。卷积层通过卷积核对输入数据进行卷积操作,提取特征信息。池化层对卷积层的输出进行下采样,减少参数数量,提高模型的泛化能力。全连接层将池化层的输出连接到输出层,进行最终的预测。

3.2 长短期记忆网络 (LSTM)

LSTM 是一种特殊的 RNN,能够学习时间序列的长期依赖关系。它通过门控机制,控制信息流的传递,避免梯度消失问题,从而能够有效地学习时间序列的长期依赖关系。

3.3 注意力机制 (Attention)

Attention 机制能够关注时间序列中的关键特征,提升模型的预测精度。它通过计算每个时间步的权重,对时间序列进行加权求和,从而突出重要信息,降低噪声干扰。

3.4 阿基米德优化算法 (AOA)

AOA 是一种新型的元启发式优化算法,灵感来源于阿基米德螺旋线。它具有收敛速度快、全局搜索能力强等优点,能够有效地优化模型的超参数。

结论

本文提出了一种基于 AOA 优化的 CNN-LSTM-Attention 风电功率预测模型。该模型利用 AOA 优化 CNN-LSTM-Attention 模型中的超参数,通过 CNN 提取风电功率序列的时空特征,LSTM 学习时间序列的长期依赖关系,Attention 机制关注关键时间特征,最终实现对风电功率的高精度预测。在真实风电场数据上的实验结果表明,与其他预测模型相比,本文提出的 AOA-CNN-LSTM-Attention 模型在预测精度方面取得了显著提升,验证了该模型的有效性和优越性。

未来工作:

  • 探索更有效的特征提取方法,进一步提升模型的预测精度。
  • 研究将 AOA-CNN-LSTM-Attention 模型应用于其他领域,例如电力负荷预测和太阳能发电预测。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值