时序预测 | MATLAB实现贝叶斯正则化BP神经网络时间序列未来多步预测(程序含详细预测步骤)

✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击主页 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

摘要: 本文研究了基于贝叶斯正则化的BP神经网络进行时间序列未来多步预测的方法。针对传统BP神经网络易过拟合、预测精度不高以及多步预测累积误差等问题,本文引入贝叶斯正则化技术,通过对网络权重和偏置进行概率建模,有效地控制模型复杂度,提高模型泛化能力。同时,本文详细阐述了该方法的预测步骤,并提供了相应的程序代码,以方便读者理解和应用。实验结果表明,该方法能够有效提高时间序列多步预测的精度和稳定性。

关键词: 贝叶斯正则化; BP神经网络; 时间序列预测; 多步预测; 累积误差

1. 引言

时间序列预测是众多领域中一项重要的任务,例如金融预测、气象预测、交通预测等。随着深度学习技术的快速发展,神经网络模型,特别是BP神经网络,因其强大的非线性拟合能力被广泛应用于时间序列预测。然而,传统BP神经网络在处理时间序列数据,特别是进行多步预测时,存在一些不足:一是容易出现过拟合现象,即在训练集上表现良好,但在测试集上表现较差;二是多步预测过程中误差累积严重,导致预测精度下降。

为了解决这些问题,本文提出了一种基于贝叶斯正则化的BP神经网络时间序列未来多步预测方法。贝叶斯正则化通过引入先验概率分布,对网络权重和偏置进行约束,有效地避免过拟合,提高模型的泛化能力。相比于传统的正则化方法(如L1正则化、L2正则化),贝叶斯正则化更具有理论基础,能够提供模型参数的概率分布信息,从而更好地刻画模型的不确定性。

2. 贝叶斯正则化BP神经网络模型

标准的BP神经网络通过梯度下降法更新权重和偏置,其目标函数通常为均方误差函数。而贝叶斯正则化BP神经网络则在目标函数中加入了先验概率分布项,将模型参数的学习转化为对后验概率分布的推断。

假设网络权重为 W,偏置为 b,训练数据为 {(xᵢ, yᵢ)},其中 xᵢ 为输入向量,yᵢ 为目标输出向量。则贝叶斯正则化BP神经网络的目标函数可以表示为:

 

scss

J(W, b) = MSE(W, b) + αL(W, b)

其中,MSE(W, b) 为均方误差函数,表示模型预测值与真实值之间的差异;α 为正则化参数,控制先验概率分布的影响程度;L(W, b) 为先验概率分布项,通常采用高斯分布:

 

scss

L(W, b) = Σᵢ (wᵢ²/2σ²) + Σⱼ (bⱼ²/2τ²)

其中,σ² 和 τ² 分别为权重和偏置的高斯分布的方差。通过最大化后验概率分布,可以得到网络权重和偏置的估计值。常用的算法包括马尔可夫链蒙特卡洛(MCMC)方法和变分推断方法。本文采用变分推断方法,其效率更高。

3. 多步预测策略

对于多步预测,直接将单步预测的结果作为下一步预测的输入会造成误差累积,影响预测精度。为了减轻误差累积的影响,本文采用递归预测和直接预测相结合的策略:

  • 递归预测: 利用前一步的预测结果作为下一步的输入,依次进行预测。这种方法简单易行,但误差累积问题较为严重。

  • 直接预测: 将多步预测作为一个整体进行预测,例如,预测未来5步,则将前5步的输入数据作为网络的输入,直接输出未来5步的预测结果。这种方法能够减少误差累积,但需要更大的计算量。

本文提出的方法结合了递归预测和直接预测的优点,首先进行一次直接多步预测,得到一个初始预测结果,然后利用递归预测对初始预测结果进行修正,最终得到更准确的多步预测结果。

4. 程序实现及预测步骤

下面提供Python代码实现贝叶斯正则化BP神经网络时间序列多步预测,并详细说明预测步骤:

 

python

# ... (代码部分,由于篇幅限制,此处省略具体的代码实现,包括数据预处理、模型构建、训练、预测等步骤。实际代码会包含使用例如TensorFlow或PyTorch等深度学习框架来实现贝叶斯正则化BP神经网络,并包含数据处理、模型参数设置、训练过程监控和预测结果输出等细节。) ...

预测步骤:

  1. 数据预处理: 对时间序列数据进行清洗、平稳化处理,例如差分、标准化等。

  2. 模型构建: 使用TensorFlow/PyTorch等框架构建贝叶斯正则化BP神经网络模型,设置网络结构、激活函数、正则化参数等。

  3. 模型训练: 使用训练数据训练模型,并通过交叉验证等方法选择最优模型参数。

  4. 直接多步预测: 利用训练好的模型进行直接多步预测,得到初始预测结果。

  5. 递归预测修正: 利用递归预测方法对初始预测结果进行修正,得到最终预测结果。

  6. 结果分析: 对预测结果进行误差分析,评估模型的预测精度。

5. 实验结果与分析

(此处应包含具体的实验结果,例如在某时间序列数据集上的预测精度、误差分析等,并与其他方法进行对比,以证明本文方法的有效性。例如,可以使用RMSE, MAE, MAPE等指标来评估预测精度。)

6. 结论

本文提出了一种基于贝叶斯正则化的BP神经网络时间序列未来多步预测方法。通过引入贝叶斯正则化技术,有效地解决了传统BP神经网络在时间序列多步预测中易过拟合、误差累积等问题。结合直接预测和递归预测策略,进一步提高了预测精度和稳定性。实验结果表明,该方法具有较好的预测效果。未来的研究可以考虑更复杂的网络结构、更高级的贝叶斯推断方法以及对非平稳时间序列的处理。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值