【编码译码】LTE Turbo编译码综合Matlab仿真

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

长期演进技术(LTE)作为第四代移动通信系统,其高效的信道编码方案在保证高速数据传输的同时,也显著提升了系统抗干扰能力。Turbo码作为LTE系统中关键的信道编码技术,凭借其优异的性能和接近香农限的译码能力,成为研究热点。本文将对LTE Turbo编译码进行综合性探讨,涵盖其编码原理、译码算法以及性能优化等方面。

一、 Turbo 编码原理

LTE系统中采用的Turbo码属于并行级联卷积码(Parallel Concatenated Convolutional Codes, PCCCs),其核心思想是通过两个或多个简单的卷积码并行编码,并利用迭代译码算法来获得接近香农限的性能。其编码过程如下:

首先,信息比特序列经过一个随机交织器进行重新排列,生成交织后的比特序列。然后,该序列与交织后的序列分别进入两个并行的递归系统卷积码(RSC)编码器进行编码,产生两个校验比特序列。最终,原始信息比特序列和两个校验比特序列一起构成Turbo码字。两个RSC编码器通常采用不同的生成多项式,以保证其输出序列具有足够的独立性,从而提升迭代译码的性能。 LTE系统中,RSC编码器的生成多项式和约束长度是根据系统需求和性能要求选择的,不同的系统配置可能使用不同的参数。

交织器的作用至关重要。它通过打乱信息比特的顺序,有效地降低了信道误码的集中性,从而提高了迭代译码的收敛速度和译码性能。常用的交织器包括块交织器、随机交织器和伪随机交织器等。LTE系统中,采用的是一种基于伪随机序列的块交织器,其设计需要考虑交织增益和实现复杂度之间的平衡。

二、 Turbo 译码算法

Turbo译码器采用迭代解码的策略,通过多个译码器之间的信息交换来逐步改善译码结果。常用的Turbo译码算法主要包括最大后验概率(MAP)算法及其改进算法,例如Log-MAP算法和Max-Log-MAP算法。

MAP算法是基于贝叶斯准则的最佳译码算法,它能够最大化后验概率,从而获得最优的译码结果。然而,MAP算法的计算复杂度较高,难以在实际系统中应用。Log-MAP算法通过对数运算将MAP算法的计算量降低,而Max-Log-MAP算法则进一步简化了计算过程,在保证一定性能的前提下,极大地降低了计算复杂度。

LTE系统中,普遍采用简化的Max-Log-MAP算法。该算法通过对数似然比(LLR)作为信息传递的载体,在各个译码器之间迭代交换信息,最终得到译码结果。迭代次数是影响译码性能和计算复杂度的重要参数。在实际应用中,需要根据信道条件和系统需求选择合适的迭代次数,以在性能和复杂度之间取得平衡。

译码过程通常包括以下几个步骤:

  1. 初始化: 初始化LLR值。

  2. 前向递归: 每个RSC译码器从左到右进行前向递归计算,得到每个比特的后验概率。

  3. 后向递归: 每个RSC译码器从右到左进行后向递归计算,得到每个比特的后验概率。

  4. 信息交换: 将每个RSC译码器的输出LLR值传递给另一个译码器,作为其输入。

  5. 迭代: 重复步骤2-4,直到达到预设的迭代次数或满足终止条件。

  6. 硬判决: 根据最终的LLR值,进行硬判决,得到最终的译码结果。

三、 性能优化

为了进一步提升LTE Turbo码的性能和效率,研究者们进行了大量的优化工作,主要集中在以下几个方面:

  • 交织器设计: 优化交织器结构,使其能够更好地分散误码,提升迭代译码的收敛速度。

  • 译码算法优化: 研究更高效的译码算法,例如改进的Log-MAP算法或其他低复杂度算法。

  • 提前终止算法: 在译码过程中,如果满足一定的终止条件,则提前终止译码过程,从而减少计算量,提高译码效率。

  • 并行译码: 利用多核处理器或硬件加速器实现并行译码,提高译码速度。

四、 结论

Turbo码在LTE系统中发挥着至关重要的作用,其高效的编译码方案保障了系统的高速数据传输和可靠性。本文对LTE Turbo编译码进行了综合性的分析,阐述了其编码原理、译码算法以及性能优化策略。随着技术的不断发展,对Turbo码的进一步研究,例如在5G和未来的6G系统中的应用,以及结合人工智能技术进行优化,将会持续推动移动通信技术向前发展。 未来研究方向可以着眼于低功耗、高吞吐量译码算法的开发,以及在非理想信道条件下的性能提升。 对各种交织器和译码算法的性能进行更深入的比较分析,并结合实际应用场景,选择最优的编译码方案,也是重要的研究方向。

📣 部分代码

function y = lte_TurboEncoder(u, intrlvrIndices)

persistent Turbo

if isempty(Turbo)

    Turbo = comm.TurboEncoder('TrellisStructure', poly2trellis(4, [13 15],13), ...

                 'InterleaverIndicesSource', 'Input port');

end

y = step(Turbo, u, intrlvrIndices);

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

信息传输的可靠性和有效性一直是通信系统中研究的热点问题,而信道编码技术则是很好解决这一矛盾的有效技术之一。由C.Berrou 等人于1993 年首次提出的Turbo ,以其接近香农极限的良好性能,不仅在低信噪比下高噪声中表现出优越的性能,而且具有强大的抗干扰、抗衰落能力等优点,使其在通信领域得到了广泛的应用。因而,对Turbo 的研究具有十分重要的实用价值。本文主要对LTE 标准下的Turbo 进行了研究及FPGA 实现。   本文介绍了LTE 标准下Turbo 的理论研究和性能分析,并FPGA 实现。首先,介绍了编码器的结构和译码算法:MAP,LOG_MAP 和MAX_LOG_MAP,接着在考虑译码速度、硬件实现复杂度及资源消耗的前提下,对复杂度较低,性能优异,基于Radix-4 的MAX_LOG_MAP 算法进行了详细推导,并得到了MATLAB下不同影响因素的译码性能曲线。其次,对接收数据量化,定点数据表示,内交织器,MAX_LOG_MAP 中的关键运算单元等模块进行了深入研究和设计。最后,在ISE 13.3 环境下,对FPGA 实现的Turbo 进行了功能测试,并使用Xilinx公司的Kintex-7(XC7K325T)芯片进行了性能仿真,得到了FPGA 设计的译码性能,并对硬件实现做了进一步的优化。   测试的结果表明,本论文实现的Turbo 具有良好的性能,工作稳定,是可以满足LTE 系统项目的性能要求的。   近年来由于信息网络化和经济全球化的迅猛发展,人们对移动通信的要求也随之提高,及时可靠,不受任何限制的进行信息传输交流,想要达到高的工作效率和经济效益,这就要求手机不仅仅用来打电话,收发电子邮件,而且还要能上网、文件传输,以及提供各种各样的多媒体服务。现有的移动网络已经很难满足用户的需要,一方面要求移动业务的增长要跟上用户对业务需要的增长速度,另一方面要求我们对技术进行革新,增加系统容量来满足日益增多的移动用户。在这两种要求的驱动下,移动通信技术得以不断的发展。   移动通信由马可尼于1897年率先采用无线电传输消息所开启[1]。时至今日,移动通信在这100多年的历史中已经取得了很大的进步和发展,从诞生于1978年的第一代的模拟蜂窝网电网系统,到第二代全数字蜂窝网电话系统的出现,再到现在第三代个人通信系统和新一代通信系统的普及,移动通信在社会中已不可缺少。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值