PyTorch学习之路:多层全连接神经网络实现MNIST手写数字分类

本文通过PyTorch实现多层全连接神经网络,对MNIST数据集的手写数字进行分类,详细介绍了代码实现过程。
摘要由CSDN通过智能技术生成

本代码参考廖星宇《深度学习入门之PyTorch》中示例代码,手动复现而来,仅供个人学习使用,侵删。

#多层全连接神经网络实现MNIST手写数字分类
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

#定义三层全连接神经网络,每一层都是线性的
class simpleNet(nn.Module):
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        #传入的参数分别为:输入的维度、第一层网络的神经元个数、第二层网络的神经元个数、第三层网络(输出层)的神经元个数
        super(simpleNet, self).__init__()
        self.layer1 = nn.Linear(in_dim, n_hidden_1)
        self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
        self.layer3 = nn.Linear(n_hidden_2, out_dim)

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x

#添加激活函数,改进网络的非线性
class Activation_Net(nn.Module):
    def __init__(self, in_dim, n_hidden_1, n_hi
  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
MNIST是一个手写数字数据集,它包含了大量的手写数字图片和对应的标签。这个数据集已经成为了机器学习中一个很重要的数据集,因为它简单易用,同时也能够展示机器学习算法的效果。 基于PyTorchMNIST手写数字分类模型通常采用卷积神经网络(Convolutional Neural Network, CNN)来实现。卷积神经网络是一种专门用于图像识别的深度学习算法,它通过多层卷积和池化操作,提取图像中的特征,并最终将其映射到对应的分类结果上。 在PyTorch中,我们可以使用torchvision模块中的datasets和transforms来预处理MNIST数据集。我们可以通过下面的代码来创建MNIST数据集: ``` import torch import torchvision.datasets as dsets import torchvision.transforms as transforms train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) ``` 接下来,我们可以通过torch.nn模块来构建卷积神经网络模型。在这个模型中,我们通常会采用多个卷积层和池化层,最终将特征映射到全连接层上,再通过softmax函数得到分类结果。 ``` import torch.nn as nn import torch.nn.functional as F class CNNModel(nn.Module): def __init__(self): super(CNNModel, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=2) self.conv2 = nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2) self.fc1 = nn.Linear(7 * 7 * 64, 1024) self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 7 * 7 * 64) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = CNNModel() ``` 接着,我们可以使用torch.optim模块来定义优化器和损失函数,并进行模型训练和测试。 ``` import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() if batch_idx % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += criterion(output, target).item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, 10): train(epoch) test() ``` 通过以上步骤,我们就可以基于PyTorch构建并训练出一个MNIST手写数字分类模型了。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值