衡量芯片运算能力的指标

MACCs

MACCs(Multiply-accumulate operations)表示乘加运算:b乘c加a为一次MACC指令,两次OP。

乘加运算是模型运算里的基本单元,矩阵的运算基本都是乘加。

TOPS

TOPS(Tera Operation Per Second,每秒万亿次运算),描述的是芯片AI运算方面的能力。TOPS描述的是芯片MACC(Multiply Accumulate, 乘积累加)运算的能力,常用来衡量自动驾驶的算力。MACC运算包括整数相乘和相加两个过程,自动驾驶深度学习等算法里的核心运算就是矩阵运算,矩阵运算又可以分解为数个MACC指令。

这里没有指定数据类型,具体评价算力要结合数据精度。例如某块芯片算力在INT_8数据格式下是1TOPS算力,但是在实际跑模型时也无法达到百分之百,百分之五十左右较为正常。

与此对应的还有GTOPSMTOPS算力单位,1GTOPS代表处理器每秒钟可进行十亿次(10^9)操作,1MTOPS代表处理器每秒钟可进行一百万次(10^6)操作。

TOPS/W用于度量在1W功耗的情况下处理器能进行多少万亿次操作,也是评价处理器运算能力的一个性能指标。

INT8位精度下的MACC(乘加运算)数量在FP16(半浮点数,也就是16位浮点数)精度下等于减少了一半,FP32(浮点数,也就是32位浮点数)再减少了一半。

举例:假设有512MACC运算单元,运行频率为1GHZ,INT8的数据结构和精度,算力为512X2(2理解为一个MACC为一次乘法和一次加法,为两次运算操作)。

TOPS仅仅指处理器每秒万亿次操作,需要结合具体数据类型精度才可以用于FLOPS转换。

FLOPS

FLOPS(floating-point operations pre second)每秒所执行的浮点运算次数,表示运算速度,字尾的是大写的S,代表秒,常用来估算电脑的执行效率,尤其是在使用到大量浮点运算的科学计算领域。

浮点运算,包括了所有涉及小数的运算。这类运算在某类应用软件中常常出现,要比整数运算更耗时间。现在大部分处理器,都有一个专门用来处理浮点运算的“浮点运算器”(FPU)。因此FLOPS所量测的,实际上是FPU的执行速度。

PFLOPS:每秒一千万亿(10^15)次的浮点运算;

TFLOPS:每秒一万亿(10^12)次的浮点运算;

GFLOPS:每秒十亿(10^9)次的浮点运算;

FLOPs

FLOPs(Floating point Operations(s表示复数))浮点运算次数,表示运算量。这个参数常用来评价深度学习模型的运算量,如果已知模型FLOPs可通过换算求得某个已知参数的芯片运行一遍模型的时间。

例如:INT_8 1TOPS算力的芯片,1TFLOPs的模型,假设芯片效率百分之百,运行一遍需要4秒,因为1TFLOPs单位是FP32;

FLOPs可以用来衡量模型的复杂度,描述了数据过一遍这么复杂的网络需要多大的计算量,即使用该模型时所需要的计算力总量。

MAC

MAC(Memory Access Cost)内存访问成本,描述了这个复杂的网络到底需要多少参数才能定义它,即存储该模型所需要的存储空间。

例如:某个模型需要256000个浮点参数定义,转化为bit乘以32得8192000bit,再除以8转化为Byte,1024KB,也就是1M,那么这个模型大小约为1M。

DMIPS

DMIPS(Dhrystone Million Instructions Per Second,每秒处理的百万级的机器语言指令数),描述的是CPU的运算能力。自动驾驶多传感器融合的滤波算法、激光点云的配准算法、多数的路径规划和决策算法考验的都是CPU的运算能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值