18.065 LEC4. Eigenvalues and Eigenvectors

《Matrix Methods in Data Analysis, Signal Processing, and Machine Learning》MIT Course Number:18.065课程习题答案

LEC4. Eigenvalues and Eigenvectors

Problems of Lecture 4 (from textbook Section I.6)

2 Compute the eigenvalues and eigenvectors of A and A − 1 A^{−1} A1. Check the trace !
A = [ 0 2 1 1 ]   a n d   A − 1 = [ − 1 / 2 1 1 / 2 0 ] . A=\begin{bmatrix}0&2\\1&1\end{bmatrix}\ and\ A^{−1}=\begin{bmatrix}-1/2&1\\1/2&0\end{bmatrix}. A=[0121] and A1=[1/21/210]. A − 1 A^{−1} A1 has the ∗ ∗ ∗ ∗ ‾ \underline{****} eigenvectors as A. When A has eigenvalues λ 1 λ_1 λ1 and λ 2 λ_2 λ2 , its inverse has eigenvalues ∗ ∗ ∗ ∗ ‾ \underline{****} .

11 The eigenvalues of A equal the eigenvalues of A T A^T AT. This is because det(A − λI) equals det( A T A^T AT − λI). That is true because ∗ ∗ ∗ ∗ ‾ \underline{****} . Show by an example that the eigenvectors of A and A T A^T AT are not the same.

15 (a) Factor these two matrices into A = X Λ X\Lambda XΛ X − 1 X^{−1} X1 :
A = [ 1 2 0 3 ]   a n d   A = [ 1 1 3 3 ] . A=\begin{bmatrix}1&2\\0&3\end{bmatrix}\ and\ A=\begin{bmatrix}1&1\\3&3\end{bmatrix}. A=[1023] and A=[1313].
(b) If A = X Λ X\Lambda XΛ X − 1 X^{−1} X1 then A 3 A^3 A3 = ( )( )( ) and A − 1 A^{−1} A1 = ( )( )( ).

Solutions to Lecture 4

2 A − 1 A^{−1} A1 has the s a m e ‾ \underline{same} same eigenvectors as A. When A has eigenvalues λ 1 = 2 λ_1=2 λ1=2 and λ 2 = − 1 λ_2=-1 λ2=1 , its inverse has eigenvalues λ 1 − 1 = 1 / 2   a n d   λ 2 − 1 = − 1 ‾ \underline{λ^{-1}_1=1/2\ and\ λ^{-1}_2=-1} λ11=1/2 and λ21=1.

11 (A − λI) has the same determinant as ( A T A^T AT − λI) which can be written as ( A − λ I ) T (A − λI)^T (AλI)T because every square matrix has det(M) = det( M T M^T MT) . That every square matrix has det(M) = det( M T M^T MT) is a basic fact because determinant is the sum of product of items that come from different columns and rows and if you transpose that matrix the result won’t change.
[ 1 0 1 0 ]   h a v e   e i g e n v e c t o r s   [ 0 1 ]   , [ 1 / 2 1 / 2 ] \begin{bmatrix}1&0\\1&0\end{bmatrix}\ have\ eigenvectors\ \begin{bmatrix}0\\1\end{bmatrix}\ ,\begin{bmatrix}1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix} [1100] have eigenvectors [01] ,[1/2 1/2 ]
[ 1 1 0 0 ] h a v e   e i g e n v e c t o r s   [ − 1 / 2 1 / 2 ]   , [ 1 0 ]   \begin{bmatrix}1&1\\0&0\end{bmatrix} have\ eigenvectors\ \begin{bmatrix}-1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix}\ , \begin{bmatrix}1\\0\end{bmatrix}\ [1010]have eigenvectors [1/2 1/2 ] ,[10] They have different eigenvectors.

15 (a)
A = [ 1 2 0 3 ]   =   [ 1 1 / 2 0 1 / 2 ] [ 1 0 0 3 ] [ 1 − 1 0 2 ] A=\begin{bmatrix}1&2\\0&3\end{bmatrix}\ =\ \begin{bmatrix}1&1/\sqrt{2}\\0&1/\sqrt{2}\end{bmatrix}\begin{bmatrix}1&0\\0&3\end{bmatrix}\begin{bmatrix}1&-1\\0&\sqrt{2}\end{bmatrix} A=[1023] = [101/2 1/2 ][1003][1012 ]
A = [ 1 1 3 3 ]   =   [ 1 / 2 1 / 10 − 1 / 2 3 / 10 ] [ 0 0 0 4 ] [ 3 2 / 4 − 2 / 4 10 / 4 10 / 4 ] A=\begin{bmatrix}1&1\\3&3\end{bmatrix}\ =\ \begin{bmatrix}1/\sqrt{2}&1/\sqrt{10}\\-1/\sqrt{2}&3/\sqrt{10}\end{bmatrix}\begin{bmatrix}0&0\\0&4\end{bmatrix}\begin{bmatrix}3\sqrt{2}/4&-\sqrt{2}/4\\\sqrt{10}/4&\sqrt{10}/4\end{bmatrix} A=[1313] = [1/2 1/2 1/10 3/10 ][0004][32 /410 /42 /410 /4]
(b) If A = X Λ X\Lambda XΛ X − 1 X^{−1} X1 then A 3 A^3 A3 = ( X X X)( Λ 3 \Lambda^3 Λ3 )( X − 1 X^{−1} X1) and A − 1 A^{−1} A1 = ( X − 1 X^{−1} X1)( Λ − 1 \Lambda^{-1} Λ1)( X X X).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值