R语言 描述性统计分析1

以下为学习《R语言实战》笔记。

1.方法

  1. 对于基础安装,summary()提供最大值、最小值、四分位数和数值型变量的均值,及因子向量和逻辑向量的频率统计
  2. Hmisc包的describe()可返回变量和观测的数量、缺失值和唯一值得数目、平均数、分位数,及五个最大的值和五个最小的值。
  3. pastecs包的stat.desc(),使用格式:stat.desc(x, basic=TRUE, desc=TRUE, norm=FALSE, p=0.95),其中,x为数据框或时间序列,basic=TRUE(默认)则计算x中所有值、空值、缺失值的数量,及最小值、最大值、值域还有总和;当desc=TRUE(默认)则计算中位数、平均数、平均数的标准误、平均数置信度为95%的置信区间、方差、标准差以及变异系数;norm=TRUE(非默认),则返回正态分布统计量,包括偏度和丰度(以及它们的统计显著程度)和Shapiro-Wilk正态检验即如果。p=0.05表示计算平均数的置信区间默认置信度为0.95.

  4. psych包中describe(),使用语法为:describe(x, na.rm = TRUE, interp=FALSE,skew = TRUE, ranges = TRUE,trim=.1, type=3,check=TRUE,fast=NULL,quant=NULL,IQR=FALSE,omit=FALSE),可以计算非缺失值的数量、平均数、标准差、中位数、截尾平均数、绝对中位差、最小值、最大值、值域、偏度、丰度和平均值的标准误

当先载入Hmisc包后,再载入psych包,Hmisc包中的同名函数describe()会被psych中describe()屏蔽(masked),可使用Hmisc::describe()语句调用Hmisc包中的describe()函数

2.实例

> vars <- c("mpg", "hp", "wt")
> head(mtcars[vars])
                   mpg  hp    wt
Mazda RX4         21.0 110 2.620
Mazda RX4 Wag     21.0 110 2.875
Datsun 710        22.8  93 2.320
Hornet 4 Drive    21.4 110 3.215
Hornet Sportabout 18.7 175 3.440
Valiant           18.1 105 3.460

> library(pastecs)
> stat.desc(mtcars[vars],norm = T)
                     mpg            hp           wt
nbr.val       32.0000000   32.00000000  32.00000000
nbr.null       0.0000000    0.00000000   0.00000000
nbr.na         0.0000000    0.00000000   0.00000000
min           10.4000000   52.00000000   1.51300000
max           33.9000000  335.00000000   5.42400000
range         23.5000000  283.00000000   3.91100000
sum          642.9000000 4694.00000000 102.95200000
median        19.2000000  123.00000000   3.32500000
mean          20.0906250  146.68750000   3.21725000
SE.mean        1.0654240   12.12031731   0.17296847
CI.mean.0.95   2.1729465   24.71955013   0.35277153
var           36.3241028 4700.86693548   0.95737897
std.dev        6.0269481   68.56286849   0.97845744
coef.var       0.2999881    0.46740771   0.30412851
skewness       0.6106550    0.72602366   0.42314646
skew.2SE       0.7366922    0.87587259   0.51048252
kurtosis      -0.3727660   -0.13555112  -0.02271075
kurt.2SE      -0.2302812   -0.08373853  -0.01402987
normtest.W     0.9475647    0.93341934   0.94325772
normtest.p     0.1228814    0.04880824   0.09265499

> library(psych)
> describe(mtcars[vars])
    vars  n   mean    sd median trimmed   mad   min    max  range skew kurtosis    se
mpg    1 32  20.09  6.03  19.20   19.70  5.41 10.40  33.90  23.50 0.61    -0.37  1.07
hp     2 32 146.69 68.56 123.00  141.19 77.10 52.00 335.00 283.00 0.73    -0.14 12.12
wt     3 32   3.22  0.98   3.33    3.15  0.77  1.51   5.42   3.91 0.42    -0.02  0.17

> library(Hmisc)
> Hmisc::describe(mtcars[vars])
mtcars[vars] 

 3  Variables      32  Observations
-----------------------------------------------------------------------------------------
mpg 
       n  missing distinct     Info     Mean      Gmd      .05      .10      .25      .50      .75      .90      .95 
      32        0       25    0.999    20.09    6.796    12.00    14.34    15.43    19.20    22.80    30.09    31.30 

lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9
-----------------------------------------------------------------------------------------
hp 
       n  missing distinct     Info     Mean      Gmd      .05      .10      .25      .50      .75      .90      .95 
      32        0       22    0.997    146.7    77.04    63.65    66.00    96.50   123.00   180.00   243.50   253.55 

lowest :  52  62  65  66  91, highest: 215 230 245 264 335
-----------------------------------------------------------------------------------------
wt 
       n  missing distinct     Info     Mean      Gmd      .05      .10      .25      .50      .75      .90      .95 
      32        0       29    0.999    3.217    1.089    1.736    1.956    2.581    3.325    3.610    4.048    5.293 

lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3.845 4.070 5.250 5.345 5.424
-----------------------------------------------------------------------------------------

 

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页