2019牛客暑期多校训练营(第二场)A

题目描述

题目大意是
    你有n个点(0~n-1),按顺序形成一个环,初始时你在0的位子,你随机顺时针走一步或者逆时针走一步,一旦你走到一个点,环上所有点都被经过至少一次后,你就必须停下来。
问你最后停留在m这个位子的概率是多少。

输入描述

输入的第一行包含一个整数T,后面的T行包含两个空格分隔的整数Ni和Mi
1 ≤ T ≤ 1021 1 \leq T \leq 1021 1T1021
0 ≤ M &lt; N ≤ 1 0 9 0 \leq M &lt; N \le 10^9 0M<N109

输出描述

输出T行每一行包含一个整数,表示前i个场景将按顺序发生的概率。您应该输出数字对 1 0 9 + 7 10^9+7 109+7取模后的结果。假设概率是 P Q {{P} \over {Q}} QP,所需的输出将是 P × Q − 1 P \times Q^{-1} P×Q1 mod 109+7

输入样例

3
1 0
2 1
3 0

输出样例

1
1
0

solution

  • 如果n=1, 那么其落到0的概率是1(一开始就落到0了)。如果n>1,你会很容易发现终点落到1~n-1的概率是相同的,因为他们的地位相同,而落到0的概率是0,因为它是起点。
  • 除了推论,这题还有一个做法就是打表,随机数模拟题意中的过程,也能得到结果。

打表代码

代码来源

#include<bits/stdc++.h>
using namespace std;
int t,now,n,x;
int vis[105],book[105];
int main(){
    cin>>n;
    srand((unsigned int)(time(NULL)));
    for(int i=1;i<=1e5;i++){
        memset(vis,0,sizeof(vis));
        vis[0] = 1;
        now = 0;
        t = 1;//表示已访问点的数量 
        while(t<n){
            x=rand()%2?1:-1;
            now+=x;
            now=(now+n)% n;
            if(!vis[now]){
                vis[now]=1;
                t++;
            }
            if(t==n)
                book[now]++;
        }
    }
    for(int i=0;i<n;i++)
        cout<<book[i]<<' ';
    cout<<endl;
}

AC代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 0x3fffffff
#define maxn 100005
#define mod 1000000007
ll poww(ll a,ll b){     
	ll res=1;     
	while(b){         
		if(b&1)
        res=(res*a)%mod;
		a=(a*a)%mod;
		b>>=1;
	}
	return res;
}
int n,m,k,t;
int main(){
    scanf("%d",&t);
    ll ans=1;
    while(t--){
        scanf("%d%d",&n,&m);
        ll res;
		if(n==1)res=1;
		else{
			if(m==0)
                res=0;
			else res=poww(n-1,mod-2); 
		}
		ans=(ans*res)%mod;//结果是一个前缀积 
		printf("%lld\n",ans);
    }
}

总结

本题就是道概率题,考验数学推理能力。
此外涉及到的编程知识有:
快速幂
模的逆元
费马小定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值