算术平均(Arithmetic Mean)
算术平均是最常见的平均值计算方法。所有数据点的总和除以数据点的数量。
用途
算术平均适用于大多数普通的平均值计算场景,如测量数据、考试成绩等。它能很好地反映数据的中心趋势,特别是在数据分布较为均匀的情况下。
优点:
- 简单直观,容易理解和计算。
- 在数据分布均匀时,能很好地代表整体情况。
缺点:
- 对极值(即非常大或非常小的值)非常敏感,可能导致失真。
几何平均 (Geometric Mean)
几何平均是通过计算所有数据点的乘积,然后取其n次方根得到的平均值。
用途:
几何平均常用于计算增长率(如投资回报率、人口增长率等)和比例变化,因为它可以更好地处理乘法效应和相对变化。
优点:
- 能更准确地反映数据的相对变化。
- 对于处理成比例的数据或涉及乘法关系的数据特别有效。
缺点:
- 不能处理负数或零值,因为这些值会使乘积为负或为零,从而无法取根。
计算过程相对复杂。
调和平均 (Harmonic Mean)
调和平均是数据点倒数的平均值的倒数。
用途:
调和平均在计算速度、密度等比率型数据时特别有用。例如,计算平均速度、平均每单位成本等。
优点:
- 对于处理速率、比率等数据特别有效。
- 能很好地处理数据集中某些小值的情况。
缺点:
- 对于极小值非常敏感,会被非常小的数据点拉低。
- 不能处理为零的数据点,因为零的倒数是无穷大。
总结
- 算术平均适用于一般情况,特别是在数据分布均匀且没有极端值时。
- 几何平均适用于计算比例变化和乘法关系的数据,例如 SPEC CPU 中多个 Benchmarks 的结果聚合成一个值,这里每一个数值本身是比例的关系。
- 调和平均适用于处理速率和比率型数据,如平均速度和每单位成本。