使用imbalanced-learn库中的SMOTEENN方法进行数据不平衡问题的上采样和下采样处理
在机器学习任务中,数据不平衡问题是指训练集中不同类别的样本数量差异较大。这种不平衡可能导致模型对多数类别样本过于偏向,从而对少数类别样本预测能力较弱。为了解决这个问题,可以使用一种叫做SMOTEENN的方法,它结合了上采样和下采样的技术。
SMOTEENN方法是imbalanced-learn库中的一种集成采样方法,它首先使用SMOTE(Synthetic Minority Over-sampling Technique)方法进行上采样,然后再使用ENN(Edited Nearest Neighbors)方法进行下采样。
SMOTE方法通过对少数类样本进行插值生成新的合成样本,从而增加少数类样本的数量。该方法基于K近邻算法,对每个少数类样本找到其K个最近邻样本,然后在这些最近邻样本之间进行插值生成新的合成样本。这样可以使得少数类样本在特征空间中更加均匀地分布。
ENN方法是一种基于K近邻的下采样方法,它通过删除与其K个最近邻中大多数类别样本相邻的少数类别样本来减少样本数量。这样可以减少多数类别样本对分类器的影响,提高模型对少数类别样本的识别能力。
下面是使用imbalanced-learn库中的SMOTEENN方法进行数据处理的示例代码: