使用imbalanced-learn库中的SMOTEENN方法进行数据不平衡问题的上采样和下采样处理

310 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用imbalanced-learn库中的SMOTEENN方法处理数据不平衡问题。SMOTEENN结合了SMOTE的上采样和ENN的下采样技术,以改善机器学习模型在面对类别不平衡数据时的表现。通过示例代码展示了如何应用SMOTEENN来调整样本分布,以提升模型对少数类别的预测能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用imbalanced-learn库中的SMOTEENN方法进行数据不平衡问题的上采样和下采样处理

在机器学习任务中,数据不平衡问题是指训练集中不同类别的样本数量差异较大。这种不平衡可能导致模型对多数类别样本过于偏向,从而对少数类别样本预测能力较弱。为了解决这个问题,可以使用一种叫做SMOTEENN的方法,它结合了上采样和下采样的技术。

SMOTEENN方法是imbalanced-learn库中的一种集成采样方法,它首先使用SMOTE(Synthetic Minority Over-sampling Technique)方法进行上采样,然后再使用ENN(Edited Nearest Neighbors)方法进行下采样。

SMOTE方法通过对少数类样本进行插值生成新的合成样本,从而增加少数类样本的数量。该方法基于K近邻算法,对每个少数类样本找到其K个最近邻样本,然后在这些最近邻样本之间进行插值生成新的合成样本。这样可以使得少数类样本在特征空间中更加均匀地分布。

ENN方法是一种基于K近邻的下采样方法,它通过删除与其K个最近邻中大多数类别样本相邻的少数类别样本来减少样本数量。这样可以减少多数类别样本对分类器的影响,提高模型对少数类别样本的识别能力。

下面是使用imbalanced-learn库中的SMOTEENN方法进行数据处理的示例代码:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值