智能机器人与旋量代数(4)

本文探讨了二维和三维中的特殊群,包括正交群O(n)及其子群特殊正交群SO(n),重点介绍了SO(3)在旋转表示中的作用,以及特殊欧几里得群SE(3)和幺模群U(n)特别是SU(2)的性质。
摘要由CSDN通过智能技术生成

2.2 特殊的群

三维移动群 T ( 3 ) T(3) T(3)

其中元素P的一般表达形式有两种,具有同构(isomorphism)关系:向量表达 P = ( P 1 , P 2 , P 3 ) T P=(P_{1},P_{2},P_{3})^{T} P=(P1,P2,P3)T 与反对称矩阵表达 P ⟼ P ^ P{\longmapsto}\hat P PP^.

其中:
[ 0 − P 3 P 2 P 3 0 − P 1 − P 2 P 1 0 ] \begin{bmatrix} 0 & -P_{3} & P_{2}\\ P_{3} & 0 & -P_{1}\\ -P_{2} & P_{1} & 0 \end{bmatrix} 0P3P2P30P1P2P10

T ( 3 ) T(3) T(3) 也是交换群。

正交群 O ( n ) O(n) O(n) 与特殊正交群 S O ( n ) SO(n) SO(n) :

n × n n \times n n×n 正交实数矩阵组成的的群称为正交群(Orthogonal Group),记作 O ( n ) O(n) O(n)。更进一步地, n × n n \times n n×n单位正交实数矩阵所组成的群称为特殊正交群(Special Orthogonal Group),记作 S O ( n ) SO(n) SO(n)。在日常研究中,我们考虑最多的是 S O ( 2 ) SO(2) SO(2) S O ( 3 ) SO(3) SO(3) ,前者表示物体绕固定轴线的平面转动,后者表示物体绕某一固定轴线的空间转动。

特殊正交群 S O ( 3 ) SO(3) SO(3) 也被称之为旋转矩阵群,是所有 3 × 3 3\times3 3×3实数矩阵 R R R的集合,且满足: ① . R T R = I ; ② . d e t R = 1 ①. R^TR=I; ②. detR=1 ①.RTR=I;②.detR=1.

注: 2 × 2 2\times2 2×2旋转矩阵是 S O ( 3 ) SO(3) SO(3)的一个子群,记作 S O ( 2 ) SO(2) SO(2).

特殊正交群 S O ( 2 ) SO(2) SO(2) 是所有 2 × 2 2\times2 2×2 实数矩阵 R R R的集合,且满足: ① . R T R = I ; ② . d e t R = 1 ①. R^TR=I; ②. detR=1 ①.RTR=I;②.detR=1.

由定义,每个 R ∈ S O ( 2 ) R\in SO(2) RSO(2)都可以写为:

R = [ r 11 r 12 r 21 r 22 ] = [ c o s θ − s i n θ s i n θ c o s θ ] R=\begin{bmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{bmatrix} = \begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix} R=[r11r21r12r22]=[cosθsinθsinθcosθ]

其中 θ ∈ [ 0 , 2 π ) \theta \in [0, 2\pi) θ[0,2π).

S O ( 2 ) SO(2) SO(2)中的各元素表示平面姿态,而 S O ( 3 ) SO(3) SO(3)中的各元素表示空间姿态。

特殊欧式群 S E ( 3 ) SE(3) SE(3) (Special Euclidian Group),其定义为 S O ( 3 ) SO(3) SO(3)与向量空间 R 3 R^3 R3的半直积。
数学形式表达为:
S E ( 3 ) = S O ( 3 ) ⋉ R 3 SE(3) = SO(3) \ltimes R^3 SE(3)=SO(3)R3
可简记为 ( R , P ) (R,P) (R,P),并写成 4 × 4 4\times4 4×4矩阵表达形式:
( R , P ) ⟼ [ R P 0 1 ] (R,P) \longmapsto \begin{bmatrix} R & P \\ 0 & 1 \end{bmatrix} (R,P)[R0P1]
其二元运算满足: ( R 2 , P 2 ) ( R 1 , P 1 ) = ( R 2 , R 1 , R 2 P 1 + P 2 ) (R_2,P_2)(R_1,P_1)=(R_2,R_1,R_2P_1+P_2) (R2,P2)(R1,P1)=(R2,R1,R2P1+P2)

4 × 4 4\times4 4×4 矩阵形式:

[ R 2 P 2 0 1 ] × [ R 1 P 1 0 1 ] = [ R 2 R 1 R 2 P 1 + P 2 0 1 ] \begin{bmatrix} R_2 & P_2 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} R_1 & P_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_2R_1 & R_2P_1+P_2 \\ 0 & 1 \end{bmatrix} [R20P21]×[R10P11]=[R2R10R2P1+P21]

幺模群 U ( n ) U(n) U(n)与特殊幺模群 S U ( n ) SU(n) SU(n)

幺模群 U ( n ) U(n) U(n) n × n n\times n n×n正交实数矩阵在复数域的扩展。

特殊幺模群 S U ( n ) SU(n) SU(n): n × n n\times n n×n单位正交复数矩阵组成的群。

其中的子群 S U ( 2 ) SU(2) SU(2)可表示为:

let:
a 2 + b 2 + c 2 + d 2 = 1 , a^2+b^2+c^2+d^2=1, a2+b2+c2+d2=1,
we obtain:
[ a + i b c + i d − c + i d a − i b ] ∈ S U ( 2 ) \begin{bmatrix} a+ib & c+id \\ -c+id & a-ib \end{bmatrix} \in SU(2) [a+ibc+idc+idaib]SU(2)

  • 26
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Metaphysicist.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值