Core-tuning 论文阅读

Core-tuning是一种对比正则化的微调方法,针对自监督预训练模型。它通过融合对比学习和交叉熵损失,优化类内聚类性和类间分离度,提高模型泛化能力。通过features mixup策略生成硬样本对,增强优化性能和平滑决策边界。实验表明,Core-tuning在自监督微调任务中表现优秀,并且对模型复杂度和超参数具有一定的鲁棒性。
摘要由CSDN通过智能技术生成

Core-tuning 论文阅读

介绍

论文地址Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning

Core-tuning是一种contrast-regularized tuning的方法,应用于自监督网络finetune

基本思想

使用优化supervised contrastive loss,有利于模型在finetune中得到更好的优化和学习到更好的类区分表达能力

于是作者基于cross-entropy方法进行改进,把对比学习的思想也融入到自监督loss的优化计算中。

先前方法不足

单纯使用cross-entropy,虽然可以分离不同类之间的特征,但在下游任务进行finetune时,不能很好地减少pretrained model已学习到的类之间区分特征的影响。如图,是对Resnet18学习的特征可视化

图一

创新点

通过features mixup 策略,Core-tuning可以生成hard smaple pairs来提高计算效能

图二

同时平滑决策边界,提高了模型的泛化能力

图三

优点

一,在cross-entropy可以学习到不错的类之间区分能力的基础上,增加了额外的正则化。使得模型可以学到每个类的low-entropy feature cluster和high-entropy feature space,即同类聚集程度高,不同类间分离度大

图四

二,优化contrastive loss可以比单纯使用cross-entropy收敛到更小的值,增加了额外的优化性能

方法与实现

Contrastive Loss

给定一个样本特征 z i z_i zi作为anchor, A i A_i Ai为anchor z i z_i zi集合,将与anchor同类的作为positive pairs,集合记为 P i P_i Pi,不同类的作为negative pairs,所有特征经过 l 2 − n o r m a l i z e d l_2-normalized l2normalized
L c o n = − 1 n ∣ P i ∣ ∑ i = 1 n ∑ z j ∈ P i l o g e ( z i T z j / τ ) ∑ z k ∈ A i e z i T z k / τ L_{con}=-\frac{1}{n|P_i|}\sum^{n}_{i=1}\sum_{z_j\in P_i}log\frac{e^{(z^T_iz_j/\tau)}}{\sum_{z_k\in A_i}e^{z^T_iz_k/\tau}} Lcon=nPi1i=1nzjPilogzkAieziTzk/τe(ziTzj/τ)
Regularization Effect

image-20211003150959736

最小化 H ( Z ∣ Y ) H(Z|Y) H(ZY)有利于学习每个类的low-entropy feature cluster,即提高类的聚合度,最大化 H ( Z ) H(Z) H(Z)有利于学习high-entropy feature space,提高类之间的分离度,如图四

Optimization Effect

image-20211003151812203

由于Y是Label,因此 H ( Y ) H(Y) H(Y)可以看做一个参数忽略。因此,最小化 L c o n L_{con} Lcon,便是最小化 C o n d i t i o n a l C E Conditional CE ConditionalCE,提高优化性能

Contrast-Regularized Tuning

image-20211003152958932

通过features mixup 策略,Core-tuning可以生成hard smaple pairs来提高计算效能, L c o n f L^f_{con} Lconf,由 L c o n L_{con} Lcon改进,提高了hard positive samples学习的权重

通过features mixup 策略,分类器训练 L c e m L_{ce}^{m} Lcem可以学习到更加平滑的决策边界

Mixing hard positive pairs

image-20211003153745665

通过计算余弦相似度来选择hardest positive data和hardest negative data

z h p z^{hp} zhp在正样本里与anchor相似度最低, z h n z^{hn} zhn在负样本里与anchor相似度最高

合集记为 B + = { z i + } i = 1 n B^+ = \{ z^{+}_{i}\}^{n}_{i=1} B+={zi+}i=1n

Mixing hard negative pairs

image-20211003154221581

随机选择一个负样本

合集记为 B − = { ( z i − , y i − ) } i = 1 n B^- = \{ (z^{-}_{i}, y^{-}_{i})\}^{n}_{i=1} B={(zi,yi)}i=1n

Hard Positive Reweighting

作者认为,hard positives 在对比学习中包含更多有用的信息,因此提高相应的权重

image-20211003154520330

Smooth Classifier Learning

image-20211003154742328

实验

性能评估

image-20211003155336184

由于目前还没有其它应用于自监督finetune的loss计算方法,作者将cross-entropy在supervised上的finetune作为baseline,其它在supervised上finetune的方法应用于自监督作为参考

实验证明,Core-tuning在自监督上可以取得不错的成绩

消融实验

image-20211003155921587

不同模型和训练集

image-20211003160130147

模型复杂度

image-20211003160359816

η 和 α \eta和\alpha ηα的敏感度

image-20211003160113523

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值