Python+opencv3.4+kalman(卡尔曼)滤波实现视频中运动物体追踪和轨迹绘制

官方卡尔曼滤波目标追踪实例c++版,本文的opencv版本代码是由改代码改编而来
https://www.myzhar.com/blog/tutorials/tutorial-opencv-ball-tracker-using-kalman-filter/

kalman滤波相关知识,理解等
https://blog.csdn.net/u010712012/article/details/90294295?utm_medium=distribute.pc_relevant.none-task-blog-baidujs-2

hsv色彩对照表:(设置运动目标hsv阈值时要用到)
在这里插入图片描述
实现效果:
在这里插入图片描述在这里插入图片描述
需要视频的话可以去我的下载里面找,有上面这个视频
https://download.csdn.net/download/Miaosh999/12547308

实验环境:

Python3.6+OpenCV3.4+pycharm2019

代码实现:

首先是一个简单的不用kalman滤波的运动目标追踪代码
这里可以根据需要进行摄像头运动目标识别,只要把

camera = cv2.VideoCapture('./video/yellow_ball.mp4')
#  改成camera = cv2.VideoCapture(0)  就是摄像头内识别

完整代码:

from collections import  deque
import numpy as np
import cv2
# imutils
import time
#设定阈值,HSV空间
redLower = np.array([11, 100, 100])
redUpper = np.array([20, 255, 255])
#初始化追踪点的列表
mybuffer = 64
pts = deque(maxlen=mybuffer)
#打开摄像头
camera = cv2.VideoCapture('./video/yellow_ball.mp4')
fourcc = cv2.VideoWriter_fourcc(*'XVID')  # 保存文件为avi格式
fps = camera.get(cv2.CAP_PROP_FPS)
size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)), int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))  # 输出视频尺寸,长和宽
out = cv2.VideoWriter('new_yellow_ball.avi', fourcc, fps, si
<think>好的,我需要回答用户关于如何在OpenCV C++实现卡尔曼滤波的问题。首先,我应该回顾一下卡尔曼滤波的基本原理,然后结合OpenCV的文档相关示例,找到C++实现方法。 用户提到了引用[2],其中提到了卡尔曼滤波的公式:$\hat{x}_k = (1 - g_k)\hat{x}_{k-1} + g_k z_k$。这说明用户对卡尔曼的更新步骤有一定的了解,但可能需要具体的代码示例。 接下来,我需要检查OpenCV卡尔曼滤波的类。OpenCV提供了cv::KalmanFilter类,适用于C++。这个类需要初始化状态向量、测量向量等参数。例如,创建卡尔曼滤波器对象时需要指定状态测量的维度。 然后,我需要考虑如何初始化状态转移矩阵(A)、测量矩阵(H)、过程噪声协方差(Q)、测量噪声协方差(R)等参数。这些矩阵的设置对于卡尔曼滤波的正确运行至关重要。例如,对于二维运动模型,状态向量可能包括位置速度。 另外,用户可能需要代码示例来展示预测更新步骤。在C++中,通常调用predict()correct()方法。需要注意的是,correct()方法需要传入当前的测量值作为参数。 参考引用[3]提到的动态窗口法虽然与卡尔曼滤波无关,但可能用户对状态估计运动控制感兴趣,因此可以适当提及卡尔曼滤波的应用场景,如目标跟踪。 最后,确保代码示例正确无误,并符合OpenCV的最新版本。同时,提醒用户调整参数以适应具体应用,比如调整噪声协方差矩阵以获得更好的跟踪效果。</think>### OpenCV C++卡尔曼滤波实现步骤 在OpenCV中使用C++实现卡尔曼滤波,主要依赖`cv::KalmanFilter`类。以下是分步实现说明示例代码: --- #### **1. 初始化卡尔曼滤波器** 需指定状态向量维度(`stateSize`)测量向量维度(`measureSize`),以二维位置跟踪为例: ```cpp #include <opencv2/opencv.hpp> int main() { // 初始化卡尔曼滤波器:状态维度=4(x,y,速度x,速度y),测量维度=2(x,y) cv::KalmanFilter kf(4, 2, 0); // 设置状态转移矩阵A(假设匀速模型) kf.transitionMatrix = (cv::Mat_<float>(4,4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); // 设置测量矩阵H(仅观测位置) cv::setIdentity(kf.measurementMatrix, cv::Scalar::all(1)); // 设置过程噪声协方差Q(调整参数影响跟踪平滑度) cv::setIdentity(kf.processNoiseCov, cv::Scalar::all(1e-2)); // 设置测量噪声协方差R(根据传感器精度调整) cv::setIdentity(kf.measurementNoiseCov, cv::Scalar::all(1e-1)); // 初始化状态估计误差协方差 cv::Mat state(4,1,CV_32F); // [x, y, vx, vy] cv::randn(state, 0.0, 0.1); kf.statePost = state.clone(); } ``` --- #### **2. 预测与更新步骤** ```cpp // 预测阶段:返回预测状态 cv::Mat prediction = kf.predict(); // 假设获取到新测量值measurement(类型为cv::Mat) cv::Mat measurement(2,1,CV_32F); measurement.at<float>(0) = new_x; // 填入实际测量值x measurement.at<float>(1) = new_y; // 填入实际测量值y // 更新阶段:校正预测值 cv::Mat estimated = kf.correct(measurement); ``` --- #### **3. 完整示例(目标跟踪场景)** ```cpp #include <opencv2/opencv.hpp> #include <iostream> int main() { cv::KalmanFilter kf(4, 2, 0); // 初始化参数(同步骤1) // ...(此处省略重复参数设置代码) // 模拟测量数据(示例用随机数生成) std::vector<cv::Point2f> measurements; for (int i=0; i<10; ++i) { measurements.push_back(cv::Point2f(i + 0.1f*rand(), i + 0.1f*rand())); } for (const auto& meas : measurements) { // 预测 cv::Mat pred = kf.predict(); std::cout << "预测位置: " << pred.at<float>(0) << ", " << pred.at<float>(1) << std::endl; // 更新 cv::Mat measure(2,1,CV_32F); measure.at<float>(0) = meas.x; measure.at<float>(1) = meas.y; cv::Mat esti = kf.correct(measure); std::cout << "校正后状态: " << esti.at<float>(0) << ", " << esti.at<float>(1) << std::endl; } return 0; } ``` --- #### **参数调整建议** - **过程噪声协方差Q**:增大Q值会使滤波器更信任新测量值,适合快速运动目标。 - **测量噪声协方差R**:增大R值会降低测量值的权重,适合传感器噪声较大的场景。 --- ### 应用场景 卡尔曼滤波OpenCV中常用于: 1. 目标跟踪(如视频中车辆轨迹预测)[^2] 2. 传感器数据融合(如融合摄像头与IMU数据) 3. 运动预测(如动态窗口法中的障碍物位置估计)[^3] ---
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值