卷积神经网络中的参数计算(转载)

转自: https://www.cnblogs.com/hejunlin1992/p/7624807.html
举例1:

比如输入是一个32x32x3的图像,3表示RGB三通道,每个filter/kernel是5x5x3,一个卷积核产生一个feature map,下图中,有6个5x5x3的卷积核,故输出6个feature map(activation map),大小即为28x28x6。
在这里插入图片描述
下图中,第二层到第三层,其中每个卷积核大小为5x5x6,这里的6就是28x28x6中的6,两者需要相同,即每个卷积核的“层数”需要与输入的“层数”一致。有几个卷积核,就输出几个feature map,下图中,与第二层作卷积的卷积核有10个,故输出的第三层有10个通道。
在这里插入图片描述
举例2:

NxN大小的输入(暂时不考虑通道数),与FxF大小的卷积核(暂时不考虑个数)做卷积,那么输出大小为多大?计算公式为:(N - F) / stride + 1,其中stride为做卷积是相邻卷积核的距离。
在这里插入图片描述
举例3:

当输入为7x7大小,卷积核为3x3,stride=1,在7x7周围补上一圈0(pad=1个像素),那么输出大小为多大?

是7x7。
在这里插入图片描述
举例4:

输入为32x32x3,卷积核大小为5x5,总共有10个卷积核,做卷积的时候stride=1,pad=2,那么这一层总共含有多少参数?

每个卷积核含有的参数个数为:553 + 1 = 76,其中1是偏置bias,由于有10个卷积核,故总参数为76*10=760。
在这里插入图片描述
总结:
在这里插入图片描述
其中,卷积核的数量K一般是2的整数次幂,这是因为计算方便(计算机计算2^n比较快)

关于池化层的参数计算:
在这里插入图片描述

参考:

斯坦福大学CS231N课程PPT

http://cs231n.stanford.edu/slides/2016/winter1516_lecture7.pdf

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积神经网络参数计算可以分为两个部分:卷积层参数计算和全连接层参数计算。 1. 卷积层参数计算 卷积层卷积神经网络的核心组成部分,它可以提取输入特征的局部特征卷积层参数计算包括卷积核权重和偏置的计算。 假设输入特征图的大小为 $W_1 \times H_1 \times C_1$,卷积核的大小为 $K \times K \times C_1 \times C_2$,步长为 $S$,填充为 $P$,输出特征图的大小为 $W_2 \times H_2 \times C_2$,则卷积层参数数量为: 参数数量 = 卷积核权重数量 + 偏置数量 卷积核权重数量 = $K \times K \times C_1 \times C_2$ 偏置数量 = $C_2$ 输出特征图的大小可以通过以下公式计算: $W_2=\lfloor \frac {W_1-K+2P}S \rfloor +1$ $H_2=\lfloor \frac {H_1-K+2P}S \rfloor +1$ 卷积层参数计算需要根据输入特征图的大小、卷积核的大小、步长和填充等参数进行计算。 2. 全连接层参数计算 全连接层是卷积神经网络的一种常用层次,它可以将卷积层输出的特征图转换为一维向量,并将其输入到全连接层进行分类或回归等任务。全连接层的参数计算包括权重和偏置的计算。 假设全连接层有 $N$ 个神经元,上一层的输出特征图大小为 $W\times H\times C$,则全连接层的参数数量为: 参数数量 = 权重数量 + 偏置数量 权重数量 = $W\times H\times C\times N$ 偏置数量 = $N$ 全连接层的参数计算需要根据上一层的输出特征图大小和全连接层神经元数量等参数进行计算。 总的来说,卷积神经网络参数计算包括卷积层和全连接层两部分,根据网络的结构和参数设置进行计算可以得到网络的总参数数量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值