在visual studio 2019下安装ipopt并实现非线性规划求解(C++)

本文介绍了如何通过vcpkg尝试安装IPopt失败后,采用手动配置成功安装IPopt的方法,包括解决IntelliSense和编译模式的报错。接着展示了一个使用IPopt和CasADI库解决非线性规划问题的C++代码示例,以及如何通过修改目标函数实现最大化问题的求解。
摘要由CSDN通过智能技术生成

1. 首先安装ipopt

1.1 尝试vcpks包管理器安装(失败)

  1. 安装vcpkg: 按照下边网址操作https://github.com/Microsoft/vcpkg#quick-start-windows

  2. 先下载到本地在这里插入图片描述

  3. 解压下载好的文件放在指定位置,在文件夹位置打开cmd(点击红色圈里路径输入cmd再点击enter)在这里插入图片描述
    输入 bootstrap-vcpkg.bat 构建vcpkg.exe在这里插入图片描述
    运行安装包代码 vcpkg install [packages to install]
    在这里插入图片描述
    运行vcpkg search查看Vcpkg支持的开源库列表,发现ipopt不在列表中,安装不了ipopt,以后安装其他库可以使用这个方法
    在这里插入图片描述
    参考链接:https://blog.csdn.net/u012861467/article/details/106518247

1.2 单独配置ipopt(成功)

  1. 按照下边链接配置
    方法一:https://blog.csdn.net/weixin_43160744/article/details/130366268
    or https://blog.csdn.net/hjk_1223/article/details/127678334
    方法二:https://blog.csdn.net/hjk_1223/article/details/128211321
    配置完成后,有报错
    报错一: E1696 命令行错误:
    解决方案:将IntelliSense选项条中的禁用IntelliSense选项从“False”改为"True"即可。
    详见 https://zhuanlan.zhihu.com/p/375964461
    报错二: C1083无法打开报错文件
    看到下面这个链接里说release和debug运行的时候一个能运行,一个不能,就试着改了下
    https://blog.csdn.net/ljqiankun/article/details/129238254
    debug的时候不能运行
    在这里插入图片描述
    改成release后运行成功,弹出结果了,C++初学,不是太懂,目前得到了结果
    在这里插入图片描述
    网上有很多介绍Debug和Release区别的,后续学习更多了再深入探究,https://blog.csdn.net/qq_41979948/article/details/129693997

2. 实现一个简单的用IPOPT求解非线性规划的例子

下面是一个简单的非线性规划问题求解的实例:

2.1 问题描述:

最小化目标函数:f(x, y) = x^2 + y^2
约束条件为:
g1(x, y) = x + y ≤ 10
g2(x, y) = x - y ≤ 10
其中,x和y是优化变量。

2.2 问题求解:

  1. 代码如下:
#include <iostream>
#include <casadi/casadi.hpp>

using namespace casadi;
using namespace std;

int main() {
	// Define the optimization variables
	SX x = SX::sym("x");
	SX y = SX::sym("y");

	// Define the objective function
	SX f = pow(x, 2) + pow(y, 2);

	// Define the constraints
	SX g1 = x + y;
	SX g2 = x - y;

	// Define the NLP problem
	SXDict nlp = { {"x", vertcat(x, y)}, {"f", f}, {"g", vertcat(g1, g2)} };

	// Allocate an NLP solver and buffers
	Function solver = nlpsol("solver", "ipopt", nlp);

	// Set the bounds and initial guess
	DM x0 = DM::vertcat({ 2, 2 });
	DMDict arg = { {"lbx", -10}, {"ubx", 10}, {"lbg", -10}, {"ubg", 10}, {"x0", x0} };

	// Solve the problem
	DMDict res = solver(arg);

	// Print the optimal solution
	cout << "Optimal solution: " << res.at("x") << endl;

	// Print the optimal cost
	cout << "Optimal cost: " << res.at("f") << endl;

	return 0;
}
  1. 结果:因为精度的关系得到的是近似于0的结果在这里插入图片描述
  2. 求最大值:在CasADi中,NLP问题的默认求解方式是最小化问题。如果要解决最大化问题,则可以通过定义新的目标函数来实现。修改目标函数代码如下:
SX f = - pow(x, 2) - pow(y, 2);
  1. 最大化结果在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值