1. 首先安装ipopt
1.1 尝试vcpks包管理器安装(失败)
-
安装vcpkg: 按照下边网址操作https://github.com/Microsoft/vcpkg#quick-start-windows
-
先下载到本地
-
解压下载好的文件放在指定位置,在文件夹位置打开cmd(点击红色圈里路径输入cmd再点击enter)
输入 bootstrap-vcpkg.bat 构建vcpkg.exe
运行安装包代码 vcpkg install [packages to install]
运行vcpkg search查看Vcpkg支持的开源库列表,发现ipopt不在列表中,安装不了ipopt,以后安装其他库可以使用这个方法
参考链接:https://blog.csdn.net/u012861467/article/details/106518247
1.2 单独配置ipopt(成功)
- 按照下边链接配置
方法一:https://blog.csdn.net/weixin_43160744/article/details/130366268
or https://blog.csdn.net/hjk_1223/article/details/127678334
方法二:https://blog.csdn.net/hjk_1223/article/details/128211321
配置完成后,有报错
报错一: E1696 命令行错误:
解决方案:将IntelliSense选项条中的禁用IntelliSense选项从“False”改为"True"即可。
详见 https://zhuanlan.zhihu.com/p/375964461
报错二: C1083无法打开报错文件
看到下面这个链接里说release和debug运行的时候一个能运行,一个不能,就试着改了下
https://blog.csdn.net/ljqiankun/article/details/129238254
debug的时候不能运行
改成release后运行成功,弹出结果了,C++初学,不是太懂,目前得到了结果
网上有很多介绍Debug和Release区别的,后续学习更多了再深入探究,https://blog.csdn.net/qq_41979948/article/details/129693997
2. 实现一个简单的用IPOPT求解非线性规划的例子
下面是一个简单的非线性规划问题求解的实例:
2.1 问题描述:
最小化目标函数:f(x, y) = x^2 + y^2
约束条件为:
g1(x, y) = x + y ≤ 10
g2(x, y) = x - y ≤ 10
其中,x和y是优化变量。
2.2 问题求解:
- 代码如下:
#include <iostream>
#include <casadi/casadi.hpp>
using namespace casadi;
using namespace std;
int main() {
// Define the optimization variables
SX x = SX::sym("x");
SX y = SX::sym("y");
// Define the objective function
SX f = pow(x, 2) + pow(y, 2);
// Define the constraints
SX g1 = x + y;
SX g2 = x - y;
// Define the NLP problem
SXDict nlp = { {"x", vertcat(x, y)}, {"f", f}, {"g", vertcat(g1, g2)} };
// Allocate an NLP solver and buffers
Function solver = nlpsol("solver", "ipopt", nlp);
// Set the bounds and initial guess
DM x0 = DM::vertcat({ 2, 2 });
DMDict arg = { {"lbx", -10}, {"ubx", 10}, {"lbg", -10}, {"ubg", 10}, {"x0", x0} };
// Solve the problem
DMDict res = solver(arg);
// Print the optimal solution
cout << "Optimal solution: " << res.at("x") << endl;
// Print the optimal cost
cout << "Optimal cost: " << res.at("f") << endl;
return 0;
}
- 结果:因为精度的关系得到的是近似于0的结果
- 求最大值:在CasADi中,NLP问题的默认求解方式是最小化问题。如果要解决最大化问题,则可以通过定义新的目标函数来实现。修改目标函数代码如下:
SX f = - pow(x, 2) - pow(y, 2);
- 最大化结果