IV值的计算逻辑

博客探讨了在建模中衡量变量预测能力的IV值指标,根据IV值的范围将其分为无、弱、中、强和超强预测能力。IV值的计算涉及了好用户与坏用户在不同分箱中的比例。提供了Python和Excel实现IV值计算的逻辑。
摘要由CSDN通过智能技术生成

       在建模的时候,我们对会单个变量的预测能力进行预测,主要使用IV值这个指标,IV值的预测能力如下:

           IV<=0.02 : 无预测能力;

          0.02 - 0.1 :弱预测能力;

          0.1 - 0.3 :中预测能力;

          0.3 - 0.5 :强预测能力;

          大于0.5的为超强预测能力;

       IV值的计算公式:

          IV = (Pgood_section_total - Pbad_section_total) * log( (Pgood_section/P_bad_section) / (Pgood_total/Pbad_total) ) )

        Pgood_section_total:分箱好用户与整体好用户比值;

        Pbad_section_total:分箱坏用户与整体坏用户比值;

        Pgood_section:分箱好用户与该分箱整体比值;

        Pbad_section:分箱坏用户与该分箱整体比值;

        Pgood_total:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平凡的世界fei

你的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值