图示代码,轻松解决IV值计算问题(python)

今天来讲一下IV值的计算问题

因本人从事风控建模行业,故不可避免需要明白IV值的整个今生前世,故此次来讲解IV值。

一、IV的定义及必备常见知识

IV是什么?全称是Information Value,中文意思是信息价值,或者信息量。

那它有什么内在含义呢?网上公认的答案:变量的预测能力。且通常来讲,变量的IV值越高,则该变量的预测能力越强

这就对选取哪些x进行建模,起到了关键的作用了,但是IV也有其限制的范围。

首先、模型必须是有监督模型(即有y标签变量),其次、y标签必须是二分类(即y只有两类y1,y2)

常见的IV取值范围代表意思如下:

若IV在(-∞,0.02]区间,视为无预测力变量

若IV在(0.02,0.1]区间,视为较弱预测力变量

若IV在(0.1,+∞)区间,视为预测力可以,而实际应用中,也是保留IV值大于0.1的变量进行筛选。

二、IV计算过程

在了解IV计算过程之前,必须明白另一个概念"WOE"

WOE的全称是“Weight of Evidence”,即证据权重。计算公式为:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值