Open AI API 参数解释

在使用 OpenAI 的 API 发送请求时,temperaturetop_pstream 这几个参数具有特定的含义和作用:

  1. temperature

    • 用途:这个参数用于控制模型输出的随机性或多样性。temperature 的值可以从 0 到 1 范围内调整。
    • 行为:当 temperature 设置得较低(例如 0.1),模型的回答倾向于更加确定、一致和重复性高。当 temperature 设置得较高(例如 1),模型的回答则更加多样化和创造性。
    • 典型用途:在需要确保回答的一致性和准确性时使用较低的 temperature,在探索不同可能性或创造性回答时使用较高的 temperature
  2. top_p

    • 用途:这个参数用于控制生成过程中采样的“词汇池”的大小,称为“nucleus sampling”。
    • 行为top_p 是一个概率阈值,只有累积概率达到这个阈值的最高概率词汇会被考虑进生成过程。例如,top_p 设置为 1 意味着没有限制,模型会从整个词汇库中选择词汇。设置为 0.9 表示只从累积概率达到前 90% 的词汇中选择。
    • 典型用途:用于增加输出的多样性而不是严格地基于最高概率的词汇选择。
  3. stream

    • 用途:这个参数决定了 API 的响应方式,是以流的形式还是一次性返回完整的响应。
    • 行为:当 stream 设置为 True 时,API 会逐渐返回生成的内容,即边生成边返回。当设置为 False 时,API 会等到整个生成过程完成后才返回结果。
    • 典型用途:在需要实时接收生成数据时(如实时显示聊天回复),可以设置为 True。在大多数情况下,特别是需要一次性获取完整回答的情况下,设置为 False 是更常见的选择。
### 部署和微调 LLaMA-Factory 模型 #### 准备工作环境 为了在 Windows 上成功部署并微调 LLaMA-Factory 模型,需要先安装必要的依赖项。这包括 Python 和 PyTorch 的设置。 ```bash conda create -n llama-env python=3.9 conda activate llama-env pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 这些命令创建了一个新的 Conda 虚拟环境,并安装了 CUDA 版本的 PyTorch 库[^1]。 #### 安装 LLaMA-Factory 及其依赖库 接下来要克隆 LLaMA-Factory 仓库到本地计算机: ```bash git clone https://github.com/facebookresearch/llama.git cd llama pip install -e . ``` 这段代码会下载项目源码并将它作为可编辑包安装,使得可以随时修改代码而不必重新打包发布。 #### 下载预训练模型权重文件 尽管 LLaMA-Factory 是一个用于构建自定义语言模型的强大工具集,但是实际应用中通常不会从头开始训练整个网络结构;相反,更常见的是基于现有的高质量参数初始化新任务的学习过程——即迁移学习方法的一部分。因此,在此之前还需要获取官方发布的预训练模型权重来加载至框架内。 可以通过如下方式获得所需资源链接: 访问 Hugging Face Model Hub 或者其他公开平台找到合适的版本进行下载保存于指定路径下以便后续使用。 #### 微调模型 完成上述准备工作之后就可以着手准备自己的数据集以及调整超参来进行特定领域上的优化操作了。假设已经有了标注好的文本对儿组成的 CSV 文件形式的数据集,则可以直接利用内置脚本来启动训练流程: ```python from transformers import Trainer, TrainingArguments, AutoModelForCausalLM, DataCollatorForLanguageModeling import datasets model_name_or_path = "path_to_pretrained_model" train_file = "./data/train.csv" dataset = datasets.load_dataset('csv', data_files={'train': train_file}) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) def tokenize_function(examples): return tokenizer(examples['text']) tokenized_datasets = dataset.map(tokenize_function, batched=True) data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15) training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=None, data_collator=data_collator, ) trainer.train() ``` 该段Python程序展示了如何通过HuggingFace Transformers库中的`Trainer`类简化微调过程,同时指定了评估策略、学习率等重要参数配置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北纬40度~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值