葡萄酒数据集经常被用于机器学习、模式识别和统计分类算法的测试中。由于其特征维度较高,非常适合于验证特征选择和降维方法,例如主成分分析(PCA)或线性判别分析(LDA)的效果。同时,由于数据集包含多个分类,它也经常被用作分类算法(如决策树、随机森林、支持向量机等)的标准测试集。
前篇我们讲述了用SVM做鸢尾花二分类识别器,本篇我们用前篇相似的代码,更换一个维度更高的数据进行测试。
葡萄酒分类:葡萄酒数据集是另一个分类问题,但特征数量增至13个。任务是根据化学组份将葡萄酒分为两个不同的类别。
数据示例:用SVM做葡萄酒二分类识别器
问题和数据说明
这里数据截取自wine数据,根据13维的描述数值,识别葡萄酒的类别。由于本文讲述二分类,我们在3种类别中选取两种类别,标签变更为1和-1,整理得到数据data/wine_data.csv。
部分数据如下:
label | f1 | f2 | f3 | f4 | f5 | f6 | f7 | f8 | f9 | f10 | f11 | f12 | f13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 14.23 | 1.71 | 2.43 | 15.6 | 127 | 2.8 | 3.06 | 0.28 | 2.29 | 5.64 | 1.04 | 3.92 | 1065 |
1 | 13.2 | 1.78 | 2.14 | 11.2 | 100 | 2.65 | 2.76 | 0.26 | 1.28 | 4.38 | 1.05 | 3.4 | 1050 |
1 | 13.16 | 2.36 | 2.67 | 18.6 | 101 | 2.8 | 3.24 | 0.3 | 2.81 | 5.68 | 1.03 | 3.17 | 1185 |
… | … | … | … | … | … | … | … | … | … | … | … | … | … |
-1 | 13.27 | 4.28 | 2.26 | 20 | 120 | 1.59 | 0.69 | 0.43 | 1.35 | 10.2 | 0.59 | 1.56 | 835 |
-1 | 13.17 | 2.59 | 2.37 | 20 | 120 | 1.65 | 0.68 | 0.53 | 1.46 | 9.3 | 0.6 | 1.62 | 840 |
-1 | 14.13 | 4.1 | 2.74 | 24.5 | 96 | 2.05 | 0.76 | 0.56 | 1.35 | 9.2 | 0.61 | 1.6 | 560 |
源码
MindOpt团队开发的代数建模语言MAPL(MindOpt Algebra Programming Language, MindOptAPL,简称为MAPL),可以用来编码上面的问题,并且调用求解器进行求解。
MAPL的V2.4版本上新了向量化建模的语法,可以方便地实现矩阵的转置、矩阵乘法等功能,详情>>。
完整代码如下:
clear model;
####################################################
#
# Vectorization Modeling Example
# Linear SVM
#
####################################################
option modelname svm_03; #定义存储文件名
# ----------建模--------Start----
# svm_02.mapl
# 1.读取iris的用于构建SVM模型的训练数据
param data_dir = "./data/wine_data-train.csv";
param X = read_csv( data_dir, use_col="1,2,3,4,5,6,7,8,9,10,11,12,13",skip=1);
param y = read_csv( data_dir, use_col=0,skip=1);
param dataNum = X.row;
param dataDim = X.col;
print "总共有{}个数据,每个数据有{}维"%dataNum,dataDim;
# 2.LinearSVM问题建模
param C_rho = 0.2;
print "Param C is :{}"%C_rho;
print "Start modeling-------";
var w(dataDim) >= -1 <= 1; # Bounded Model Parameter
var b; #
var eps(dataNum) >= 0;
minimize 1/2 * w' * w + C_rho * sum(eps); #'是转置,目标函数
subto constraint:
eps >= 1 - (X*w +b).*y; #注意是向量化建模,因此相当于多条维度的约束
# 3.调用求解器求解
print "Start solving-------";
option solver mindopt;
solve;
# 4. 超平面的w取值
print "- Optimal w is:";
print w;
print "- Optimal b is:";
print b;
print "- eps is:";
forall { i in 0..dataNum-1 with eps[i] > 0.001}
print " - eps[{}] = {} "%i,eps[i];
param obj_total_loss = 1/2 * w' * w + C_rho * sum(eps); #'是转置
print "- obj of total loss is : {}"%obj_total_loss;
# 5.验证并分析结果
print "";
print "验证结果:-----";
param correctNum = sum{i in 0..dataNum-1} if((sum{j in 0..dataDim-1}w[j]*X[i, j]) +b )* y[i] > 0 then 1 else 0 end;
param precision = correctNum / dataNum;
print "- Precision for train data is : {:.2f}" % precision;
#
print "";
print "导入测试数据验证效果:-----";
param data_dir_test = "./data/wine_data-test.csv";
param X_test = read_csv( data_dir_test, use_col="1,2,3,4,5,6,7,8,9,10,11,12,13",skip=1);
param y_test = read_csv( data_dir_test, use_col=0,skip=1);
param dataNum_test = X_test.row;
param dataDim_test = X_test.col;
print "- 总共有{}个数据,每个数据有{}维"%dataNum_test,dataDim_test;
print "|测试数据ID|实际标签|SVM预测标签是|";
print "|--|--|--|";
forall {i in 0..dataNum_test-1}
print "|{}|{}|{}|"%i,y_test[i], if((sum{j in 0..dataDim_test-1}w[j]*X_test[i, j]) +b ) > 0 then 1 else -1 end;
运行上述代码结果如下:
总共有87个数据,每个数据有13维
Param C is :0.2
Start modeling-------
Start solving-------
Running mindoptampl
wantsol=1
MindOpt Version 1.2.1 (Build date: 20240428)
Copyright (c) 2020-2024 Alibaba Cloud.
Start license validation (current time : 29-APR-2024 17:51:15).
License validation terminated. Time : 0.007s
Model summary.
- Num. variables : 101
- Num. constraints : 87
- Num. nonzeros : 1305
- Bound range : [1.0e+00,1.0e+00]
- Quad. bound range : [1.0e+00,1.0e+00]
- Objective range : [2.0e-01,2.0e-01]
- Quad. obj. range : [1.0e+00,1.0e+00]
- Matrix range : [1.7e-01,1.7e+03]
Presolver started.
Presolver terminated. Time : 0.001s
Interior point method started.
Iter PrimObj DualObj PrimFea DualFea GapFea Mu Time
0 +3.80399778e-01 -7.55707692e-01 1.9e-02 1.1e-02 1.1e+00 4.6e-03 0.02s
1 +1.79640739e-01 -2.13996063e-01 8.2e-03 5.0e-03 3.9e-01 1.5e-03 0.03s
2 +1.17952681e-01 -1.13914883e-01 5.2e-03 2.0e-02 2.3e-01 7.1e-04 0.03s
3 +3.61389193e-02 -2.62084850e-02 1.5e-03 5.8e-03 6.2e-02 2.0e-04 0.04s
4 +3.41691834e-02 -2.09031242e-02 1.4e-03 5.1e-03 5.5e-02 1.9e-04 0.04s
5 +3.40036247e-02 +5.83432924e-02 1.3e-03 2.2e-02 4.6e-02 2.3e-04 0.04s
6 +8.36408587e-02 -4.76077416e-01 8.4e-04 7.9e-02 5.6e-01 2.1e-04 0.04s
7 +1.25803855e-01 +1.83665783e-01 5.0e-04 1.8e-02 5.8e-02 2.9e-04 0.05s
8 +2.08232448e-01 +3.51342692e-01 1.1e-04 1.7e-02 1.4e-01 9.2e-05 0.05s
9 +2.24640702e-01 +3.15349667e-01 5.2e-05 1.6e-02 9.1e-02 5.4e-05 0.05s
10 +2.38702568e-01 +2.37176375e-01 1.4e-07 3.5e-04 2.6e-03 1.3e-05 0.05s
11 +2.36599665e-01 +2.36546454e-01 4.5e-10 2.0e-06 6.0e-05 3.0e-07 0.05s
12 +2.36550609e-01 +2.36550442e-01 1.2e-12 5.5e-09 1.8e-07 9.2e-10 0.06s
13 +2.36550464e-01 +2.36550464e-01 1.5e-16 1.3e-11 4.3e-11 3.5e-14 0.06s
Terminated.
- Method : Interior point method.
- Primal objective : 2.3655046415330E-01
- Dual objective : 2.3655046419623E-01
- Num. threads : 4
- Num. iterations : 13
- Solver details : Solver terminated with a primal/dual optimal status.
Interior point method terminated. Time : 0.046s
OPTIMAL; objective 0.24
0 simplex iterations
Completed.
- Optimal w is:
[[ 0.04857],
[ 0.01247],
[ 0.05512],
[-0.13231],
[ 0.02318],
[ 0.27035],
[ 0.46883],
[-0.01722],
[ 0.13966],
[-0.17157],
[ 0.06461],
[ 0.32124],
[ 0.00143]]
- Optimal b is:
-3.307435311971387
- eps is:
- obj of total loss is : 0.23655046415329972
验证结果:-----
- Precision for train data is : 1.00
导入测试数据验证效果:-----
- 总共有20个数据,每个数据有13维
|测试数据ID|实际标签|SVM预测标签是|
|--|--|--|
|0|1|1|
|1|1|1|
|2|1|1|
|3|1|1|
|4|1|1|
|5|1|1|
|6|1|1|
|7|1|1|
|8|1|1|
|9|1|1|
|10|-1|-1|
|11|-1|-1|
|12|-1|-1|
|13|-1|-1|
|14|-1|-1|
|15|-1|-1|
|16|-1|-1|
|17|-1|-1|
|18|-1|-1|
|19|-1|-1|
结果解析
运行结果如下:
总共有87个数据,每个数据有13维 Param C is :0.2
……
- Optimal w is: [[ 0.04857], [ 0.01247], [ 0.05512], [-0.13231], [ 0.02318], [ 0.27035], [ 0.46883], [-0.01722], [ 0.13966], [-0.17157], [ 0.06461], [ 0.32124], [ 0.00143]]
- Optimal b is: -3.3074353121126
- eps is:
- obj of total loss is : 0.23655046414945333
验证结果:-----
- Precision for train data is : 1.00
导入测试数据验证效果:-----
- 总共有20个数据,每个数据有13维
测试数据ID | 实际标签 | SVM预测标签是 |
---|---|---|
0 | 1 | 1 |
1 | 1 | 1 |
2 | 1 | 1 |
3 | 1 | 1 |
4 | 1 | 1 |
5 | 1 | 1 |
6 | 1 | 1 |
7 | 1 | 1 |
8 | 1 | 1 |
9 | 1 | 1 |
10 | -1 | -1 |
11 | -1 | -1 |
12 | -1 | -1 |
13 | -1 | -1 |
14 | -1 | -1 |
15 | -1 | -1 |
16 | -1 | -1 |
17 | -1 | -1 |
18 | -1 | -1 |
19 | -1 | -1 |
可以看到,我们使用通用MindOpt求解器,也能实现SVM“训练”葡萄酒的分类器。