pytorch中的 ModuleList 和 Sequentia对比

本文探讨了PyTorch中的ModuleList和Sequential两种结构。ModuleList结合了Module和list特性,允许存储多个模型,支持序列化处理和灵活的网络结构,但执行顺序需在forward函数中决定。Sequential则按顺序执行模块,提供简洁的forward,但牺牲了部分灵活性,要求前后模块输入输出大小匹配。了解这两者的特点有助于更好地构建和理解PyTorch网络。
摘要由CSDN通过智能技术生成

pytorch中的 ModuleList 和 Sequential对比


在构建深度神经网络时,我们经常会用到ModuleList 和 Sequential,它们都是用来组合深度网络中的nn.Module/block,从而创建一个新的网络用的,能够简化模型的创建方式,但二者在使用上有所差异。
下面是传统的模型创建方式:

class model1(nn.Module):
    def __init__(self):
        super(model1,self).__init__()
        self.linear1=nn.Linear(1,10)
        self.activation1=nn.ReLU()
        self.linear2=nn.Linear(10,100)
        self.activation2=nn.ReLU()
        self.linear3=nn.Linear(100,10)
        self.activation3=nn.ReLU()
        self.linear4=nn.Linear(10,1)
    def forward(self,x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值