pytorch中的 ModuleList 和 Sequential对比
在构建深度神经网络时,我们经常会用到ModuleList 和 Sequential,它们都是用来组合深度网络中的nn.Module/block,从而创建一个新的网络用的,能够简化模型的创建方式,但二者在使用上有所差异。
下面是传统的模型创建方式:
class model1(nn.Module):
def __init__(self):
super(model1,self).__init__()
self.linear1=nn.Linear(1,10)
self.activation1=nn.ReLU()
self.linear2=nn.Linear(10,100)
self.activation2=nn.ReLU()
self.linear3=nn.Linear(100,10)
self.activation3=nn.ReLU()
self.linear4=nn.Linear(10,1)
def forward(self,x)