推荐系统(三):矩阵分解和FM

矩阵分解

在推荐算法中,常常使用的就是协同过滤算法。针对于该算法存在的相关问题除了未使用user与items的信息进行交互式推荐以及他们自身的隐含信息外。还存在着矩阵稀疏性的问题。针对于协同过滤算法中遇到的矩阵稀疏性的问题我们提出了一种方法及矩阵分解

从协同过滤中衍生出矩阵分解模型(Matrix Factorization,MF)或者叫隐语义模型, 两者差不多说的一个意思, 就是在协同过滤共现矩阵的基础上, 使用更稠密的隐向量表示用户和物品, 挖掘用户和物品的隐含兴趣和隐含特征, 在一定程度上弥补协同过滤模型处理稀疏矩阵能力不足的问题。

隐语义模型

隐语义模型最早提出于文本领域,与相关聚类方法有所不同有相同。隐语义模型就是通过抽取隐含特征联系用户兴趣和物品之间的关系,基于用户的隐含主题和分类,然后对item进行聚类,划分到不同的类别和主题中。
下面举一个项亮老师《推荐系统时间》一书中的例子:

如果我们知道了用户A和用户B两个用户在豆瓣的读书列表, 从他们的阅读列表可以看出,用户A的兴趣涉及侦探小说、科普图书以及一些计算机技术书, 而用户B的兴趣比较集中在数学和机器学习方面。 那么如何给A和B推荐图书呢?
先说说协同过滤算法, 这样好对比不同:
对于UserCF,首先需要找到和他们看了同样书的其他用户(兴趣相似的用户),然后给他们推荐那些用户喜欢的其他书。
对于ItemCF,需要给他们推荐和他们已经看的书相似的书,比如作者B看了很多关于数据挖掘的书,可以给他推荐机器学习或者模式识别方面的书。

而如果是隐语义模型的话, 它会先通过一些角度把用户兴趣和这些书归一下类, 当来了用户之后, 首先得到他的兴趣分类, 然后从这个分类中挑选他可能喜欢的书籍。

这里就看到了隐语义模型和协同过滤的不同, 这里说的角度其实就是这个隐含特征, 比如书籍的话它的内容, 作者, 年份, 主题等都可以算隐含特征,如果这个例子还不是很清晰的话, 那么下面再举个更为具体的例子, 看看是如何通过隐含特征来划分开用户兴趣和物品的。但是在这之前, 相信通过上面这个例子, 我们已经隐隐约约感受到了协同过滤和隐语义模型的区别了, 下面放上王喆老师《深度学习推荐系统》的一个原理图作为对比, 区别简直一目了然:
在这里插入图片描述
可以列举一个下面的例子:
假设每个用户都有自己的听歌偏好, 比如A喜欢带有小清新的, 吉他伴奏的, 王菲的歌曲,如果一首歌正好是王菲唱的, 并且是吉他伴奏的小清新, 那么就可以将这首歌推荐给这个用户。 也就是说是小清新, 吉他伴奏, 王菲这些元素连接起了用户和歌曲。 当然每个用户对不同的元素偏好不同, 每首歌包含的元素也不一样, 所以我们就希望找到下面的两个矩阵:

潜在因子——用户矩阵Q

这个矩阵表示不同用户对于不同元素的偏好程度, 1代表很喜欢, 0代表不喜欢, 比如下面这样:在这里插入图片描述

潜在因子——音乐矩阵P

表示每种音乐含有各种元素的成分, 比如下表中, 音乐A是一个偏小清新的音乐, 含有小清新的Latent Factor的成分是0.9, 重口味的成分是0.1, 优雅成分0.2…
在这里插入图片描述
利用上面的这两个矩阵, 我们就能得出张三对音乐A的喜欢程度:
下面是对应的两个隐向量:
在这里插入图片描述在这里插入图片描述
根据隐向量其实就可以得到张三对音乐A的评分,即:
0.60.9+0.80.1+0.10.2+0.1+0.4+0.70 = 0.69
按照这个计算方式,每个用户对每首歌其实都可以得到这样的分数,最后就得到评分矩阵:
在这里插入图片描述
这里的红色表示用户没有打分,我们通过隐向量计算得到的。

上面例子中的小清晰, 重口味, 优雅这些就可以看做是隐含特征, 而通过这个隐含特征就可以把用户的兴趣和音乐的进行一个分类, 其实就是找到了每个用户每个音乐的一个隐向量表达形式(embedding的原理其实也是这样, 那里是找到每个词的隐向量表达), 这个隐向量就可以反映出用户的兴趣和物品的风格,并能将相似的物品推荐给相似的用户等。 有没有感觉到是把协同过滤算法进行了一种延伸, 把用户的相似性和物品的相似性通过了一个叫做隐向量的方式进行表达

但是, 真实的情况下我们其实是没有上面那两个矩阵的, 音乐那么多, 用户那么多, 我们没有办法去找一些隐特征去表示出这些东西, 另外一个问题就是即使能表示也不一定准, 对于每个用户或者每个物品的风格,我们每个人都有不同的看法。 所以事实上, 我们有的只有用户的评分矩阵, 也就是最后的结果, 并且一般这种矩阵长这样:
在这里插入图片描述
这种矩阵非常的稀疏,如果直接基于用户相似性或者物品相似性去填充这个矩阵是不太容易的, 并且很容易出现长尾问题, 所以矩阵分解就可以比较容易的解决这个问题。

矩阵分解算法的原理

矩阵分解模型其实就是在想办法基于这个评分矩阵去找到上面例子中的那两个矩阵, 也就是用户兴趣和物品的隐向量表达, 然后就把这个评分矩阵分解成Q和P两个矩阵乘积的形式, 这时候就可以基于这两个矩阵去预测某个用户对某个物品的评分了。 然后基于这个评分去进行推荐。这就是矩阵分解算法的原理。

在矩阵分解的算法框架下, 我们就可以通过分解协同过滤的共现矩阵来得到用户和物品的隐向量, 就是上面的用户矩阵Q和物品矩阵P, 这也是“矩阵分解”名字的由来

在这里插入图片描述
如果有了users矩阵和items矩阵的话,我们就知道了如果想计算user对items的评分,只需要:
在这里插入图片描述
在这里插入图片描述

编程实现

我们这里用代码实现一下上面的算法来预测上一篇文章里面的那个预测Alice对物品5的评分, 看看矩阵分解到底是怎么进行预测或者是推荐的。 我把之前的例子拿过来:
在这里插入图片描述
任务就是根据这个评分矩阵, 猜测Alice对物品5的打分。

在实现SVD之前, 先来回忆一下ItemCF和UserCF对于这个问题的做法, 首先ItemCF的做法, 根据已有的用户打分计算物品之间的相似度, 得到物品的相似度矩阵, 根据这个相似度矩阵, 选择出前K个与物品5最相似的物品, 然后基于Alice对这K个物品的得分, 猜测Alice对物品5的得分, 有一个加权的计算公式。 UserCF的做法是根据用户对其他物品的打分, 计算用户之间的相似度, 选择出与Alice最相近的K个用户, 然后基于那K个用户对物品5的打分计算出Alice对物品5的打分。 但是, 这两种方式有个问题, 就是如果矩阵非常稀疏的话, 当然这个例子是个特例, 一般矩阵都是非常稀疏的, 那么预测效果就不好, 因为两个相似用户对同一物品打分的概率以及Alice同时对两个相似物品打分的概率可能都比较小。 另外, 这两种方法显然没有考虑到全局的物品或者用户, 只是基于了最相似的例子, 很可能有偏。

这样训练完之后, 我们就可以得到用户Alice和物品5的隐向量, 根据这个就可以预测Alice对物品5的打分。 下面的代码的逻辑就是上面这两步, 这里使用带有偏置项和正则项的那个SVD算法:


```python
class SVD():
    def __init__(self, rating_data, F=5, alpha=0.1, lmbda=0.1, max_iter=100):
        self.F = F           # 这个表示隐向量的维度
        self.P = dict()          #  用户矩阵P  大小是[users_num, F]
        self.Q = dict()     # 物品矩阵Q  大小是[item_nums, F]
        self.bu = dict()   # 用户偏差系数
        self.bi = dict()    # 物品偏差系数
        self.mu = 0.0        # 全局偏差系数
        self.alpha = alpha   # 学习率
        self.lmbda = lmbda    # 正则项系数
        self.max_iter = max_iter    # 最大迭代次数
        self.rating_data = rating_data # 评分矩阵
        
        # 初始化矩阵P和Q, 方法很多, 一般用随机数填充, 但随机数大小有讲究, 根据经验, 随机数需要和1/sqrt(F)成正比
        cnt = 0    # 统计总的打分数, 初始化mu用
        for user, items in self.rating_data.items():
            self.P[user] = [random.random() / math.sqrt(self.F)  for x in range(0, F)]
            self.bu[user] = 0
            cnt += len(items) 
            for item, rating in items.items():
                if item not in self.Q:
                    self.Q[item] = [random.random() / math.sqrt(self.F) for x in range(0, F)]
                    self.bi[item] = 0
        self.mu /= cnt
        
    # 有了矩阵之后, 就可以进行训练, 这里使用随机梯度下降的方式训练参数P和Q
    def train(self):
        for step in range(self.max_iter):
            for user, items in self.rating_data.items():
                for item, rui in items.items():
                    rhat_ui = self.predict(user, item)   # 得到预测评分
                    # 计算误差
                    e_ui = rui - rhat_ui
                    
                    self.bu[user] += self.alpha * (e_ui - self.lmbda * self.bu[user])
                    self.bi[item] += self.alpha * (e_ui - self.lmbda * self.bi[item])
                    # 随机梯度下降更新梯度
                    for k in range(0, self.F):
                        self.P[user][k] += self.alpha * (e_ui*self.Q[item][k] - self.lmbda * self.P[user][k])
                        self.Q[item][k] += self.alpha * (e_ui*self.P[user][k] - self.lmbda * self.Q[item][k])
                    
            self.alpha *= 0.1    # 每次迭代步长要逐步缩小
    
    # 预测user对item的评分, 这里没有使用向量的形式
    def predict(self, user, item):
        return sum(self.P[user][f] * self.Q[item][f] for f in range(0, self.F)) + self.bu[user] + self.bi[item] + self.mu ```

下面我建立一个字典来存放数据, 之所以用字典, 是因为很多时候矩阵非常的稀疏, 如果用pandas的话, 会出现很多Nan的值, 反而不好处理。

# 定义数据集, 也就是那个表格, 注意这里我们采用字典存放数据, 因为实际情况中数据是非常稀疏的, 很少有情况是现在这样
def loadData():
    rating_data={1: {'A': 5, 'B': 3, 'C': 4, 'D': 4},
           2: {'A': 3, 'B': 1, 'C': 2, 'D': 3, 'E': 3},
           3: {'A': 4, 'B': 3, 'C': 4, 'D': 3, 'E': 5},
           4: {'A': 3, 'B': 3, 'C': 1, 'D': 5, 'E': 4},
           5: {'A': 1, 'B': 5, 'C': 5, 'D': 2, 'E': 1}
          }
    return rating_data
 
# 接下来就是训练和预测
rating_data = loadData()
basicsvd = SVD(rating_data, F=10)
basicsvd.train()
for item in ['E']:
    print(item, basicsvd.predict(1, item))
 
## 结果:
E 3.252210242858994

通过这个方式, 得到的预测评分是3.25, 这个和隐向量的维度, 训练次数和训练方式有关, 这里只说一下这个东西应该怎么用, 具体结果可以不用纠结。

参考资料:

以上内容来自于datawhale

http://datawhale.club/t/topic/42

FM模型

推荐算法在对推荐项目进行排序的过程中会使用到哪些方法呢?其中FM就是这些方法中的一个。

FM模型的引入

工业级推荐系统架构:在这里插入图片描述
推荐系统的在线部分主要分为两块:召回以及排序
在第一部分处理的数据量很大,并且处理速度要够快使用较少的特征,模型不能复杂。第二部分排序中,处理数据量相对较少,但是需要保证模型较为准确可以使用较为复杂的模型,使用较多的特征进行处理。
在这里插入图片描述

第二个阶段是排序。因为个性化推荐需要给每个用户展现不同的信息流或者物品流,而对于每个用户来说,可供推荐的物品,在具备一定规模的公司里,是百万到千万级别,甚至上亿。所以对于每一个用户,如果对于千万级别物品都使用先进的模型挨个进行排序打分,明显速度上是算不过来的,资源投入考虑这么做也不划算。从这里可以看出,召回阶段的主要职责是:从千万量级的候选物品里,采取简单模型将推荐物品候选集合快速筛减到千级别甚至百级别,这样将候选集合数量降下来,之后在排序阶段就可以上一些复杂模型,细致地对候选集进行个性化排序。
“Factorization Machine”,简称FM模型,中文名“因子分解机”,2010年由Rendle提出的。

特征组合对于推荐排序是非常非常重要的,而FM这个思路已经很简洁优雅地体现了这个思想了(主要是二阶特征组合)。DNN模型一样离不开这个特点,而MLP结构是种低效率地捕获特征组合的结构,所以即使是深度模型,目前一样还离不开类似FM这个能够直白地直接去组合特征的部分。这是你会反复发现它的原因所在,当然也许是它本人,也许不一定是它本人,但是一定是它的变体。

FM公式的理解

线性模型:思路级及问题在这里插入图片描述
LR模型是CTR预估领域早期最成功的模型,大多工业推荐排序系统采取LR这种“线性模型+人工特征组合引入非线性”的模式。因为LR模型具有简单方便易解释容易上规模等诸多好处,所以目前仍然有不少实际系统仍然采取这种模式。

线性改进模型:加入特征组合在这里插入图片描述
其实想达到这一点并不难,如上图在计算公式里加入二阶特征组合即可,任意两个特征进行组合,可以将这个组合出的特征看作一个新特征,融入线性模型中。而组合特征的权重可以用来表示,和一阶特征权重一样,这个组合特征权重在训练阶段学习获得。其实这种二阶特征组合的使用方式,和多项式核SVM是等价的。

虽然这个模型看上去貌似解决了二阶特征组合问题了,但是它有个潜在的问题:它对组合特征建模,泛化能力比较弱,尤其是在大规模稀疏特征存在的场景下,这个毛病尤其突出,比如CTR预估和推荐排序,这些场景的最大特点就是特征的大规模稀疏。
FM模型
在这里插入图片描述
在这里插入图片描述

从MF到FM模型

Matrix Factorization基本原理
在这里插入图片描述
MF(Matrix Factorization,矩阵分解)模型是个在推荐系统领域里资格很深的老前辈协同过滤模型了。核心思想是通过两个低维小矩阵(一个代表用户embedding矩阵,一个代表物品embedding矩阵)的乘积计算,来模拟真实用户点击或评分产生的大的协同信息稀疏矩阵,本质上是编码了用户和物品协同信息的降维模型。
在这里插入图片描述
Matrix Factorization到FM的转换

在这里插入图片描述
本质上,MF模型是FM模型的特例,MF可以被认为是只有User ID 和Item ID这两个特征Fields的FM模型,MF将这两类特征通过矩阵分解,来达到将这两类特征embedding化表达的目的。而FM则可以看作是MF模型的进一步拓展,除了User ID和Item ID这两类特征外,很多其它类型的特征,都可以进一步融入FM模型里,它将所有这些特征转化为embedding低维向量表达,并计算任意两个特征embedding的内积,就是特征组合的权重。
如何优化FM的算法效率
在这里插入图片描述
以上内容来源:

https://blog.csdn.net/Yasin0/article/details/91346372

FM模型的应用

最直接的想法就是直接把FM得到的结果放进sigmoid中输出一个概率值,由此做CTR预估,事实上我们也可以做召回。

由于FM模型是利用两个特征的Embedding做内积得到二阶特征交叉的权重,那么我们可以将训练好的FM特征取出离线存好,之后用来做KNN向量检索。

工业应用的具体操作步骤:

离线训练好FM模型(学习目标可以是CTR)
将训练好的FM模型Embedding取出
将每个uid对应的Embedding做avg pooling(平均)形成该用户最终的Embedding,item也做同样的操作
将所有的Embedding向量放入Faiss等
线上uid发出请求,取出对应的user embedding,进行检索召回

代码实现

http://datawhale.club/t/topic/43

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值