《2023 中国数字金融调查报告》显示,零售数字金融用户规模增长放缓,渠道选择更有倾向性、更集中化。随着数智化转型向纵深推进,新客增速见顶,用户运营成为最核心的存量增长手段。
一、金融消费行为变迁,企业需深度洞察新一代消费者需求
金融企业面临用户触达难、需求分化等多种挑战80 后和 90 后逐渐成为金融企业的主要消费群体,其金融消费习惯正在发生变化。他们不愿意亲自去线下网点办理业务,也不喜欢被动接受金融产品和服务。金融企业无法像过去那样,通过对话了解用户及对金融产品的需求。
随着移动互联网的发展,消费者群体的需求也逐渐分化,其中一些用户偏好高风险高收益,而另一些用户偏好低风险稳健收益,单一产品或金融服务无法满足所有用户的需求。
CDP用户画像平台:金融行业指导业务营销的重要利器
金融企业需要更加精准的信息和数据来支撑业务方了解用户,同时,由于数字化转型需要,越来越多的金融企业开始搭建 CDP 用户画像平台,将各个渠道数据标签化,帮助业务人员通过更加精准的数据来洞察用户,为其定制产品,满足个性化需求,同时支持营销推广和收益。二、金融企业用户画像构建路径及难点
1. CDP 用户画像构建路径用户画像是数据商业化运营的核心,其本质是从业务角度出发对用户进行分析,了解其需求,并寻找目标用户。
用户画像数据的收集:通过对各类信息进行分类、筛选、归纳和加工,可以生成用户画像所需的数据,企业在应用时需考虑数据整合的复杂度,同时也要考虑数据的实时性。
数据标签化,构建精准画像:金融企业在收集和整理所有信息后,需根据业务需求将数据标签化,能帮助金融企业找到目标用户进行精准营销,同时进一步理解潜在需求,提高产品转化率。
按照业务需求筛选用户:CDP 在帮助业务人员通过标签筛选和定位目标用户,根据用户画像进行营销推广,同时记录和反馈营销效果。
2. CDP 用户画像平台建设难点
搭建 CDP 过程中,企业需要收集和整合海量的客户行为数据、业务数据和基础数据,并服务业务复杂的查询与分析需求,这对该企业数仓引擎的性能和存储能力提出了挑战:
为了服务于各种营销活动,需要非常灵活地筛选和使用数据进行组合标签的计算,开发复杂度高;
在实际营销业务中,企业需要根据预算精确地圈选目标群体,在大数据体量下,标签精准去重对数据库系统资源消耗巨大;
- 在精准营销的个性化投放场景下,企业需要对不同标签维度进行组合计算,查询并发度高;
三、金融用户画像平台实践案例
某全国性股份制商业银行覆盖超千家营业机构,是一家金融服务种类齐全、机构网点覆盖面广、经营管理成熟稳健、品牌影响市场领先的股份制商业银行。
由于近两年企业营销模式从"以产品为中心"向"以客户为中心"转变,该银行开始搭建用户画像平台,希望基于数据去精准识别需求和推荐产品服务,从而摆脱营销渠道单一的现状。由于覆盖上亿用户,其搭建的 CDP 平台存在开发复杂度高、业务应用时效不足等诸多问题。
镜舟科技针对金融行业 CDP 的核心圈选和标签组合计算场景,提出了 CDP 标签平台解决方案,为该银行的策略投放提供灵活、便捷的客群圈选、画像分析等能力,实现营销精准投放,赋能业务、运营、产品等快速高效完成各个场景的分析。
镜舟分析型数据库通过向量化执行引擎、Pipeline 并行执行框架、MPP 分布式执行框架、CBO 优化器以及现代化物化视图等核心技术,帮助企业核心业务人员以更快系统速度、更高开发效率、更简洁的运维架构实现数据分析和查询。
同时,镜舟创新研发了基于 Bitmap 的用户圈选,可大幅节省存储空间,支持快速的聚合操作。完整的客群包出入仓技术,可直接在镜舟分析型数据库内进行交互式圈群,以极低开销满足 CDP 及上层业务系统的用数需求。
通过引入新的用户画像标签解决方案,该银行将数据分析和查询速度大幅提升,实现秒级响应,同时支持更多复杂的查询场景,将性能从 2-3 分钟提升到几十秒,实现了数倍的性能跨越。
目前,该银行线上已经有 400+ 基于新方案配置的人群画像指标,每天执行数万次人群实时分析。在用户画像标签平台中支持上层实时的精准营销业务,帮助部分业务场景提高近 30% 的转化效果。四、结语
CDP 平台的建设与应用,让数据赋能业务不再是一句空话。金融企业能够深入洞察目标用户、优化产品设计,并有效地推动市场营销活动,进而实现数据价值变现。
未来,镜舟科技的 CDP 解决方案在金融行业中的应用将会更加广泛,在实际的业务场景中提供创新技术,提供更加稳定实时的数据服务体验,以进一步提升金融企业全渠道用户洞察的能力,用数据带来商业价值。