NP完全问题类
这是一类问题,有一个共同的特性:如果其中一个是多项式可解的,那么其他的问题也是多项式可解的。
P类
确定性算法的概念:重复相同的输入,每一步执行选择和获得的输出从不改变。
判定问题的P类是:他们的Yes/No解可以用确定性算法在多项式步数内得到判定。也是接触到的大多数算法的类别,如最短路径。
NP类
NP类问题简单来说,就是给定一个解后,能在多项式时间内确定这个解是否正确的问题类。
NP完全问题
"NP完全"表示NP中判定问题的一个子类,如果他们中的一个被证明用多项式时间确定性算法可解,那么NP中的所有问题都能用多项式时间确定性算法可解,即NP=P。
为了证明一个问题是NP完全的:
1.需要证明它在NP中,
2.且对于NP中的每一个问题i,都可以在多项式时间归约到该问题
如果只满足2的话,就是NP难问题。
另外还有一些定义概念,可满足性和不确定性算法的两个阶段,不展开。
菜鸟新手,欢迎指正文章错误。