SD(Stable Diffusion) 简易教程来啦!

Stable Diffusion是一款基于 深度学习 的图像生成模型,它可以将文本描述转换为具有相应风格的图像。在本文中,我们将为您提供一个简单的教程,帮助您快速上手并使用
Stable Diffusion 进行创意表达。
在这里插入图片描述

SD 安装与部署

SD的安装和使用可以在本地电脑进行,也可以通过云端来实现。两种方式各有其优缺点:

  • 本地安装:对 电脑硬件 有一定要求,尤其是显卡、内存、硬盘和CPU。显卡是最关键的,推荐使用Nvidia的独立显卡,至少10系列,想要更好的体验可以选择40系列,显存至少4GB,建议8GB以上。内存至少8GB,硬盘最好是固态硬盘,能加快数据读取速度。支持的操作系统包括Windows 10/11、macOS(仅限搭载Apple Silicon的Mac,Intel芯片的Mac无法使用Radeon显卡)、以及Linux系统。不过,macOS系统上可用的插件可能较少,功能上可能不如Windows和Linux系统全面。

  • 云端安装:对本地电脑的硬件要求较低,因为计算和存储主要在云端进行,但需要支付给云服务商一定的使用费用。

如果本地电脑不满足上述硬件要求,可以考虑使用云端虚拟主机服务。对于那些既没有独立显卡也无法使用云服务的情况,可以通过调整软件设置,使用CPU进行渲染。虽然这种方式兼容性好,但渲染速度较慢,且内存需求至少为16GB。此外,还有一些第三方平台提供有限的免费体验,例如LibLib,每天可以免费生成100张图片。

本地安装与部署

目前普遍采用的 SD UI 是 Github 上的 Python
项目,在使用时需要对项目项目在不同的电脑和系统上编译源码,这需要使用者拥有一定的程序开发经验,所以这里我们直接使用 B 站秋叶大佬的整合包,直接安装使用。

1.软件下载

需要的同学可以文末自行扫描获取

2.软件安装

- 下载后,解压文件,首先安装运行依赖。

- 解压 sd-webui-v4.2

在刚刚解压的文件夹内找到启动器,双击后可以启动。

软件启动后,点击右下角的 “一键启动” 。

点击后会跳出如下界面,等待加载一段时间后,会自动跳转到网页操作页面。

云端安装与部署

云端服务厂商比较多,如果只是平时使用,不作为生成工具建议直接使用 第三方免费体验的功能。我这里免费体验使用的是 LibLib

认识模型和插件
在使用 SD 中,我们需要了解大模型,LORA,另外还有 VAE

,hypernetworks(超网络模型),Embedding(嵌入式模型)等的一些常见基础知识。

模型

大模型
Checkpoint 是 SD
的核心,是最基本的必备模型,体积较大,也被称为大模型。越大的模型代表融合的元素越多,表现的效果细节越丰富。不同的大模型使用不同的图片训练而成,对应不同的风格,相当于最底层的引擎。我们在模型网站筛选
Checkpoint 就是筛选大模型。

大模型后缀分两种,ckpt 和 safetensor 。
一般 ckpt 融合的数据多一点,safetensor 融合的数据少一点,模型侧重不同,各有优略,不代表好坏。
模型存放位置:\models\Stable-diffusion
本地和云端部署模型在 SD 存放位置都是一样的。

- Lora

==============

为某一风格特色的细分,是特征模型,体积较小,使用大模型后需要加一些独特的风格,就可以找这种风格的 Lora,或者自己训练。

================================================================

多个 Lora 模型混合使用可以起到叠加效果,譬如一个控制面部的 Lora 配合一个控制画风的 Lora

就可以生成具有特定画风的特定人物。因此可以使用多个专注于不同方面优化的Lora,分别调整权重,结合出自己想要实现的效果。

lora的后缀:safetensors。

模型存放位置:\models\Lora
本地和云端部署模型在 SD 存放位置都是一样的。

- VAE
VAE 模型类似滤镜 + 模型微调,对画面进行调色与微调,一般需要搭配相应的模型一起使用。(如果图片比较灰,颜色不太靓丽,就可能是没加载对应的 VAE)
模型存放位置:\models\VAE
本地和云端部署模型在 SD 存放位置都是一样的。

- Textual inversion(Embedding)

关键词预设模型,即关键词打包,即等于预设好一个关键词打包,进而来指代特定的对象/风格。比如在描述一个叫 Jam 的人物的关键词时可以把描述词打包成 Jam。
模型存放位置:\models\Embedding
本地和云端部署模型在 SD 存放位置都是一样的。

- hypernetworks(超网络模型)
Hypernetwork 是一个比 Lora 更早的模型微调技术,现在使用的人数越来越少。
模型存放位置:\models\hypernetworks
本地和云端部署模型在 SD 存放位置都是一样的。
模型下载
模型下载模型下载的渠道很多,一种是网站下载,一个是本地部署的启动器内下载。

===

1.网站下载模型网站很多,这里主要介绍 2 个:

国内 - 哩布哩布

=====================================

每个模型详细页面也有模型的参数、使用建议和效果图的具体信息,包括正反提示词,使用的什么模型,以及参数细节。

===

国外 - C站
备注:需要魔法访问

2.启动器下载,可以在启动器模型管理选择对应的模型直接下载。

模型切换

插件安装
众多开发者针对 SD 的应用开发出来的插件,使得 SD 的应用门槛降低,也增加了很多的玩法,插件的应用是 SD 的一大特色。
插件我们一般分为两种,辅助类和控制类。
插件存放位置:\extensions
本地和云端部署插件在 SD 存放位置都是一样的。

===

可以从 https://gitcode.net 下载相关的插件。

输入 SD-webui 查找对应的插件。

如果需要更新插件,可以在本地启动器中更新对应的插件。

基础使用教程

这是不是一下就可以看明白了,接下来我们试试吧~

输入正向提示词和反向提示词

正向词:

car,ground vehicle,3D product render,finely detailed,purism,ue 5,a computer
rendering,minimalism,octanerender{bestquality},highres,8k,wlop,stunning,muchdetail,UHD,full-
size photograph,futuristic feeling,vision avtr concrpt,

反向词:

(nsfw)EasyNegative,drawbybad-artist,sketchbybad-artist-
anime,(bad_prompt:0.8),(artistname,signature,watermark:1.4),(ugly:1.2),(worst
quality,poordetails:1.4),bad-hands-5,badhandv4,blur,NSFW,blurry,low
quality,worstquality,

点击生成等待一会

最后

如果你是真正有耐心想花功夫学一门技术去改变现状,我可以把这套AI教程无偿分享给你,包含了AIGC资料包括AIGC入门学习思维导图AIGC工具安装包精品AIGC学习书籍手册AI绘画视频教程AIGC实战学习等。

这份完整版的AIGC资料我已经打包好,长按下方二维码,即可免费领取!

请添加图片描述

【AIGC所有方向的学习路线思维导图】

img

【AIGC工具库】

img

【精品AIGC学习书籍手册】

img

【AI绘画视频合集】

img
这份完整版的AIGC资料我已经打包好,长按下方二维码,即可免费领取!
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值