所以应该如何部署ComfyUI,现在主流的部署方式主要是云端和本地,云端的平台有比如LibLib,端脑云等等,整体上来说各个平台的功能都是差不多的,第二是在本地部署,本地部署有很多种方式,比如有官方的整合包,秋YE的整合包等等,但是对显卡性能有一定的要求(至少要4G显存)并且最好是Windows系统
接下来我们打开ComfyUI,如果是在LibLib部署,你应该会看到这个画面:
这些按钮分别是:
如果你是在本地部署,你应该会看到这个画面(我这个是旧版):
这些按钮分别是:
一般本地部署是点击这个bat文件打开:
这个窗口就是本地部署ComfyUI的控制台,不要关掉它:
所以如何打开ComfyUI呢,云端部署寻找到关键词比如ComfyUI:
本地部署先找到默认名字叫ComfyUI_windows_portable的文件夹,当然这个是windows,并且我使用的是官方版本,也有可能叫其他名字,里面应该有这些文件:
如果你点击的是run_nvidia_gpu.bat,那么它会调用Nvidia的GPU生图,如果你点击的是run_cpu.bat,那么它会调用CPU生图,如果你没有看见.bat的后缀,那么是因为你没有打开文件资源管理器中的查看中的文件后缀名的选项。点击这两个.bat文件之后就会去到图片七的那个界面。
OK,我们回到这个界面:
我们可以先学习最基础的文生图的工作流,现在我们可以先不管本地和云端的区别,尝试搭建一个最基础文生图工作流,我这里使用的是Flux模型,模型的原理是通过文本编码器(如CLIP)转化为高维语义向量,捕捉关键词的关联性,之后根据文本语义,从纯噪声中一步步“去噪”,最终生成目标图像。
现在我们先找到Checkpoint加载器(简易)
将他拖进画布,这里有一个小技巧:双击画布可以启用搜索功能
在这个页面里可以搜索节点并预览节点,我使用的模型是Flux1的社区整合版,如果你是本地部署还没有下载模型或VAE和clip的话,请移步到我的主页,这个整合版Flux1是自带VAE和clip文本编码器的。VAE也就是变分自编码器(它的原理你可以想象一下你想做蛋糕,但是你没有具体的蛋糕配方,而是有一位经验丰富的糕点师傅,他不但能复制出你喜欢的蛋糕,还能做出各种略有差异但都美味的蛋糕,具体来说:编码器观察蛋糕后,并不输出一个固定的配方,而是给出一个“概率分布”——比如说面粉的量可能在某个平均值附近波动,鸡蛋的数量也是如此,然后,解码器每次从这个配方的“可能性范围”中随机抽取一组数值(就像随机抽取各原料的具体量),跟据这些略有不同的数值来重现蛋糕,这样,每次“做蛋糕”时,虽然蛋糕看起来都非常相似(因为都遵循了大致的风格),但又不会完全一样,增加了新意和多样性。
现在我们加载好模型了,接下来我们先把clip连上,但是首先我们先搞懂这个clip的理念。想象你有一大本字典,每个词都有一个隐秘的代码。CLIP 文本编码器就像是一个“翻译器”,它将输入的自然语言(比如一句话或一个标签)翻译成这种隐藏的代码。这个代码不是随意的,而是经过精心训练的,能捕捉文本中的语义信息,并与图像描述中的视觉概念相对应。也就是说,当你输入“一个穿红色连衣裙的女孩”,编码器就会把它翻译成一个固定长度的数字向量,而这个向量反映了“红色”、“连衣裙”、“女孩”等关键概念。
现在我们知道了clip是用来处理我们给出的提示词的,提示词必须是英文,我们寻找到clip文本编码器
顾名思义就是导入你的提示词并使用clip编码成大模型可以看懂的模样,我们需要两个clip文本编码器,因为K采样器需要一个正面条件和一个负面条件,所以我们需要两个编码器,现在将clip从加载器连出来
*OR*
接下来我们将条件导入进K采样器,K采样器的首先进入加噪阶段:根据设定的随机种子(seed)和降噪强度(denoise),K采样器向潜在图像添加噪声,部分“擦除”原始图像内容,之后就是去噪阶段:利用提供的模型(如Stable Diffusion)以及正向和负向提示词,引导模型逐步去除噪声,恢复图像细节。
我们观察K采样器,可以发现它一个有四个接口,分别是模型,正面条件,负面条件和latent
还有一些变量,具体可以看图:
我们先把K采样器的变量配置好:
模型自然就是接入模型的接口,我们看到简易加载器或UNET加载器,找到模型接口并把它接入:
接下来我们把正面条件和负面条件接入:
最后把Latent接入,因为是使用文生一张全新的图,所以找到空Latent:
然后我们看到K采样器输入还是Latent,也就是潜空间图像,我们需要使用一个叫做VAE解码的节点使用VAE解码并输出图像:
使用简易加载器的同学们看下图,依然是三个接口:
最后我们就应该可以得到我们提示词描述的图案了:
如果决定AI味太重的话,可以自行使用其他模型,调度器等等,如果遇到第一次生成的效果不好,像图中的第一次一样,可以试试把步数拉高,或者自己上网去查,总之多动手。
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
对于0基础小白入门:
如果你是零基础小白,想快速入门AI绘画是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!
零基础AI绘画学习资源介绍
👉stable diffusion新手0基础入门PDF👈
(全套教程文末领取哈)
👉AI绘画必备工具👈
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉AI绘画基础+速成+进阶使用教程👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末