Debug历程:在Relu后加dropout

起因

老师说dropout一般加在activation后面;于是我用pytorch开始尝试。在Relu之后添加dropout之后,发生报错:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation

过程

  • 在Github中搜到 we cannot have two subsequent inplace operations , 作答者还举了个例子:“If you use ABN and you use an inplace activation function (e.g. RELU with inplace set to True) then the subsequent layer cannot be inplace”
  • 由于不懂什么是ABN,于是查得 In-Place Activated BatchNorm; 这个神奇的东西把BN和Act并成一层,并且是in-place操作,能save memory。

解决

将以下EncoderBlock里 定义dropout layer的 nn.Dropout3d(dropout_rate, inplace=True) 中的 inplace=True 删除即可。

class EncoderBlock(nn.Module):
    '''
    Encoder block; Green
    '''
    def __init__(self, inChans, outChans, stride=1, padding=1, num_groups=8, activation="relu",
                 normalizaiton="group_normalization", dropout_rate=None):
        super(EncoderBlock, self).__init__()

        self.dropout_flag = False
        if normalizaiton == "group_normalization":
            self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=inChans)
            self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=inChans)
        if activation == "relu":
            self.actv1 = nn.ReLU(inplace=True)
            self.actv2 = nn.ReLU(inplace=True)
        # elif activation == "elu":
        #     self.actv1 = nn.ELU(inplace=True)
        #     self.actv2 = nn.ELU(inplace=True)
        elif activation == "sin":
            self.actv1 = Sine(1.0)
            self.actv2 = Sine(1.0)
        if dropout_rate is not None:
            self.dropout_flag = True
            self.dropout1 = nn.Dropout3d(dropout_rate, inplace=True)
            self.dropout2 = nn.Dropout3d(dropout_rate, inplace=True)
        self.conv1 = nn.Conv3d(in_channels=inChans, out_channels=outChans, kernel_size=3, stride=stride, padding=padding)
        self.conv2 = nn.Conv3d(in_channels=inChans, out_channels=outChans, kernel_size=3, stride=stride, padding=padding)


    def forward(self, x):
        residual = x

        out = self.norm1(x)
        out = self.actv1(out)
        if self.dropout_flag:
            out = self.dropout1(out)
        out = self.conv1(out)
        out = self.norm2(out)
        out = self.actv2(out)
        if self.dropout_flag:
            out = self.dropout2(out)
        out = self.conv2(out)

        out += residual

        return out
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值