pandas同时返回一个dataframe的前几行和后几行

pandas同时返回一个dataframe的前几行和后几行

解决方法:

import numpy as np
df.iloc[np.r_[0:n, -n:0]]  # 同时返回前n行与后n行
计算短文本主题一致性的方法有很多种,这里介绍一种基于LDA(Latent Dirichlet Allocation)模型的方法。具体步骤如下: 1. 安装所需的库:gensim、nltk、pandas、numpy 2. 加载文本数据并对文本进行预处理,包括分词、去除停用词、词形还原等操作 3. 构建词袋模型,并使用gensim中的LdaModel函数训练LDA模型 4. 对每个文本计算其主题分布,选取占比最大的k个主题作为该文本的主题标签 5. 计算所有文本的主题标签的共现次数矩阵,并计算共现矩阵的余弦相似度 6. 计算平均主题一致性得分 下面是一个示例代码,假设数据存储在名为df的DataFrame对象中,其中文本数据在名为text的列中: ```python import gensim from gensim import corpora from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer import pandas as pd import numpy as np # 加载停用词表和词形还原器 stop_words = set(stopwords.words('english')) lemma = WordNetLemmatizer() # 定义预处理函数 def preprocess(text): # 分词 tokens = gensim.utils.simple_preprocess(text) # 去除停用词 tokens = [token for token in tokens if token not in stop_words] # 词形还原 tokens = [lemma.lemmatize(token) for token in tokens] return tokens # 对每个文本进行预处理,并将处理结果存储在名为tokens的新列中 df['tokens'] = df['text'].apply(preprocess) # 构建词袋模型 dictionary = corpora.Dictionary(df['tokens']) corpus = [dictionary.doc2bow(tokens) for tokens in df['tokens']] # 训练LDA模型 lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=10) # 定义函数,对每个文本计算其主题分布 def get_topic_distribution(text): bow = dictionary.doc2bow(preprocess(text)) topic_distribution = np.zeros(lda_model.num_topics) for topic, prob in lda_model.get_document_topics(bow): topic_distribution[topic] = prob return topic_distribution # 对每个文本计算其主题分布,并选取占比最大的k个主题作为该文本的主题标签 k = 3 df['topic_labels'] = df['text'].apply(lambda x: np.argsort(get_topic_distribution(x))[::-1][:k]) # 计算共现矩阵的余弦相似度 co_occurrence_matrix = np.zeros((lda_model.num_topics, lda_model.num_topics)) for labels in df['topic_labels']: for i in range(k): for j in range(i+1, k): co_occurrence_matrix[labels[i], labels[j]] += 1 co_occurrence_matrix[labels[j], labels[i]] += 1 n = len(df) for i in range(lda_model.num_topics): for j in range(i+1, lda_model.num_topics): cos_sim = co_occurrence_matrix[i,j]/np.sqrt(co_occurrence_matrix[i,i]*co_occurrence_matrix[j,j]) co_occurrence_matrix[i,j] = co_occurrence_matrix[j,i] = cos_sim # 计算平均主题一致性得分 score = np.sum(co_occurrence_matrix)/(lda_model.num_topics*(lda_model.num_topics-1)/2) print("Average topic coherence score: {:.4f}".format(score)) ``` 需要注意的是,LDA模型的训练和主题一致性得分的计算都需要一些时间,因此处理大量文本数据时需要耐心等待。另外,本方法中的参数k需要根据具体情况进行调整,一般取值在2~5之间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值