一、tensorflow介绍
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。
TensorFlow可被用于语音识别或图像识别等多项机器学习和深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。TensorFlow将完全开源,任何人都可以用。(来源百度百科:https://baike.baidu.com/item/TensorFlow/18828108?fr=aladdin)
二、tensorflow中的一些基本概念
1 、图(Graph):用来表示计算任务,也就我们要做的一些操作。
2 、会话(Session):建立会话,此时会生成一张空图;在会话中添加节点和边,形成一张图,一个会话可以有多个图,通过执行这些图得到结果。如果把每个图看做一个车床,那会话就是一个车间,里面有若干个车床,用来把数据生产成结果。
3、 Tensor:用来表示数据,是我们的原料。
4 、变量(Variable):用来记录一些数据和状态,是我们的容器。
5、 feed和fetch:可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据。相当于一些铲子,可以操作数据。
形象的比喻是:把会话看做车间,图看做车床,里面用Tensor做原料,变量做容器,feed和fetch做铲子,把数据加工成我们的结果。
三、tensorflow变量初始化