随机事件与随机变量

一、随机事件

1.基本概念释义

现实生活中,一个动作或一件事情,在一定条件下,所得的结果不能预先完全确定,而只能确定是多种可能结果中的一种,称这种现象为随机现象

掷骰子数字可能是1-6中任意一个,这就是随机现象。

使随机现象得以实现和对它观察的全过程称为随机试验,记为 E E E。随机实验满足以下三个条件:

1.可以在相同条件下重复进行;
2. 结果有多种可能性,并且所有可能结果事先已知;
3. 作一次试验究竟哪个结果出现,事先不能确定。

名词符号定义
样本空间 Ω \Omega Ω随机试验的所有可能结果组成的集合
样本点 ω \omega ω试验的每一个可能结果
随机事件 A , B , C . . . A,B,C... A,B,C...样本空间 Ω \Omega Ω中满足一定条件的子集。随机事件在随机试验中可能出现也可能不出现。
必然事件在试验中,称一个事件发生是指构成该事件的一个样本点出现。由于样本空间\Omega包含了所有的样本点,所以在每次试验中,它总是发生,因此称\Omega为必然事件。
不可能事件空集 ϕ \phi ϕ不包含任何样本点,且在每次试验中总不发生

例子:
掷骰子游戏中,我们知道出现的结果可能是1,2,3,4,5,6其中的任意一个数字。那么出现任何一个数字,都可以成为一个样本点;随机事件是什么呢,就是一些样本点的的集合,当然了,是在一定条件下。比如,出现的数字是偶数的结果。
那么2,4,6就够成了一个随机事件A={2,4,6}。
样本空间就是1到6的六个数字 Ω = { 1 , 2 , 3 , 4 , 5 , 6 } \Omega=\{1,2,3,4,5,6\} Ω={1,2,3,4,5,6}
可以看到A 是 Ω \Omega Ω的一个子集。
空集可以定义 ϕ \phi ϕ为结果的数字大于6,显然是不可能出现的。

概率

1.定义:

随机试验 E E E的样本空间为 Ω \Omega Ω,对于每个事件 A A A,定义一个实数 P ( A ) P(A) P(A)与之对应,若函数 P ( . ) P(.) P(.)满足条件:

  1. 对每个事件 A A A,均有 0 < P ( A ) < = 1 0<P(A)<=1 0<P(A)<=1;

  2. P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1;

  3. 若事件 A 1 , A 2 , A 3 , . . . A_1,A_2,A_3,... A1,A2,A3,...两两互斥,即对于 i , j = 1 , 2 , . . . , i ≠ j , A i ∩ A j = ϕ i,j=1,2,...,i \neq j ,A_i \cap A_j = \phi ij=1,2,...i=j,AiAj=ϕ,均有

    P ( A 1 ∪ A 2 ∪ . . . ) = P ( A 1 ) + P ( A 2 ) + . . . P(A_1 \cup A_2 \cup ...)=P(A_1) +P(A_2) +... P(A1A2...)=P(A1)+P(A2)+...

则称 P ( A ) P(A) P(A)为事件 A A A的概率。

2.主要性质:

  1. 对于任一事件 A A A,均有 P ( A ‾ ) = 1 − P ( A ) P(\overline{A})=1-P(A) P(A)=1P(A).
  2. 对于两个事件 A A A B B B,若 A ⊂ B A \subset B AB,则有

​ $P(B-A) = P(B) - P(A), P(B) >P(A) $.

  1. 对于任意两个事件 A A A B B B,有

P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B) = P(A) + P(B) - P(A\cap B) P(AB)=P(A)+P(B)P(AB).

例子:
掷骰子中,1,2,3,4,5,6出现的概率均为1/6。 我们令 A = { 1 , 2 } , B = { 1 , 2 , 3 } A = \{ 1,2 \},B = \{1,2,3\} A={1,2},B={1,2,3}。那么有 A ‾ = { 3 , 4 , 5 , 6 } \overline{A}=\{ 3,4,5,6\} A={3,4,5,6}。可以看到,出现1或2的概率为1/3,即 P ( A ) = 1 / 3 P(A) =1/3 P(A)=1/3;出现1或2或3的概率为1/2,即 P ( B ) = 1 / 2 P(B) =1/2 P(B)=1/2。根据性质我们有

  • P ( A ‾ ) = 1 − P ( A ) = 1 − 1 / 3 = 2 / 3 P(\overline{A})=1-P(A) =1-1/3=2/3 P(A)=1P(A)=11/3=2/3,也就是出现3或4或5或6的概率;
  • P ( B − A ) = P ( B ) − P ( A ) = 1 / 2 − 1 / 3 = 1 / 6 P(B-A)=P(B) -P(A) =1/2-1/3=1/6 P(BA)=P(B)P(A)=1/21/3=1/6,也就是出现3的概率;
  • P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) = 1 / 3 + 1 / 2 − 1 / 3 = 1 / 2 P(A \cup B) = P(A) + P(B) - P(A\cap B) = 1/3 +1/2 -1/3 = 1/2 P(AB)=P(A)+P(B)P(AB)=1/3+1/21/3=1/2,也就是出现的1或2或3,也就是事件 B B B的概率;因为 A ⊂ B A \subset B AB。这里的 A ∩ B = A = { 1 , 2 } A \cap B = A =\{ 1,2 \} AB=A={1,2}

3.古典概型

我们将掷骰子游戏进行推广,设随机事件 E E E 的样本空间中只有有限个样本点,即 Ω = { ω 1 , ω 2 , . . . , ω n } \Omega= \{ \omega_1, \omega_2,..., \omega_n \} Ω={ω1,ω2,...,ωn},其中, n n n 为样本点的总数。每个样本点 ω i ( i = 1 , 2 , . . . , n ) \omega_i (i =1,2,...,n) ωi(i=1,2,...,n)出现是等可能的,并且每次试验有且仅有一个样本点发生,则称这类现象为古典概型。若事件 A A A 包含个 m m m 个样本点,则事件 A A A 的概率定义为:
P ( A ) = m n = 事 件 A 包 含 的 基 本 事 件 数 基 本 事 件 总 数 P(A) = \frac{m} {n} = \frac{事件A包含的基本事件数} {基本事件总数} P(A)=nm=A
假设有 k k k 个不同颜色的球,每个球以同样的概率 1 / l 1/l 1/l 落到 l l l 个格子 ( l > = k ) (l>=k) (l>=k) 的每个中,且每个格子可容纳任意多个球。问,分别求出如下两个事件 A A A B B B 的概率。

  • A A A :指定的 k k k 个格子中各有一个球;
  • B B B :存在 k k k 个格子,其中各有一个球。

我们思考一下,由于每个球可以平均地落入 l l l 个格子中的任一个,并且每一个格子中可落入任意多个球,所以 k k k 个球落入 l l l 个格子中的分布情况相当于从 l l l 个格子中选取 k k k 个的可重复排列,故样本空间共有 l k l^k lk 种等可能的基本结果。

​ 所以,事件 A A A 所含基本结果数应是 k k k 个球在指定的 l l l 个格子中的全排列数,即 k ! k! k!,那么有

P ( A ) = k ! l k P(A) = \frac{k!} {l^k} P(A)=lkk!

​ 为了算出事件 B B B 所含的基本事件数,我们可以分两步进行:因为 l l l 个格子可以是任意选取的,故可先从 l l l 个格子中任意选出 k k k 个出来,那么选法共有 C l k C^k_l Clk 种。对于每种选定的 k k k 个格子,依上述各有一个球的推理,则有 k ! k! k!个基本结果,故B含有 C l k ∗ k ! C^k_l*k! Clkk 个基本结果。那么有

P ( B ) = C l k ∗ k ! l k = l ! l k ∗ ( l − k ) ! P(B) = \frac {C^k_l*k!} {l^k} = \frac {l!} {l^k*(l-k)!} P(B)=lkClkk=lklk!l

​ 我们把上述例子应有到具体的问题中,概率论的历史上有一个颇为著名的问题生日问题:求 k k k 个同班同学没有两人生日相同的概率。

​ 如果把这 k k k 个同学看作上例中的 k k k 个球,而把一年365天看作格子,即 l = 365 l=365 l=365 ,则上述的 P ( B ) P(B) P(B)就是所要求的概率。我们令 k = 40 k=40 k=40 时,利用上面的公式,则 P ( B ) = 0.109 P(B) =0.109 P(B)=0.109。换句话说,40个同学中至少两个人同一天过生日的概率是: P ( B ‾ ) = 1 − 0.109 = 0.891 P(\overline {B}) = 1 - 0.109 =0.891 P(B)=10.109=0.891。其概率大的出乎意料。

这讲内容更多地是对概念知识的理解,不太涉及软件的实现,给出简单的 P ( B ) P(B) P(B)Python实现:

#我们采用函数的递归的方法计算阶乘:
def factorial(n):
    if n == 0:
        return 1;
    else:
        return (n*factorial(n-1)) 
    
l_fac = factorial(365);          #l的阶乘
l_k_fac = factorial(365-40)      #l-k的阶乘
l_k_exp = 365**40                #l的k次方

P_B =  l_fac /(l_k_fac * l_k_exp)     #P(B)
print("事件B的概率为:",P_B)
print("40个同学中至少两个人同一天过生日的概率是:",1 - P_B)

4.条件概率

1.定义:

A A A B B B 是两个事件,且 P ( B ) > 0 P(B)>0 P(B)>0,称 $P(A|B) = \frac {P(AB)} {P(B)} $ 为在事件 B B B 发生的条件下,事件 A A A 发生的概率。

2.例子:

​ 某集体中有 N N N 个男人和 M M M 个女人,其中患色盲者男性 n n n 人,女性 m m m 人。我们用 Ω \Omega Ω 表示该集体, A A A 表示其中全体女性的集合, B B B 表示其中全体色盲者的集合。如果从 Ω \Omega Ω 中随意抽取一人,则这个人分别是女性、色盲者和同时既为女性又是色盲者的概率分别为:

P ( A ) = M M + N , P ( B ) = m + n M + N , P ( A B ) = m M + N P(A) = \frac {M} {M+N} , P(B) = \frac {m+n} {M+N} , P(AB) = \frac {m} {M+N} P(A)=M+NM,P(B)=M+Nm+n,P(AB)=M+Nm

如果限定只从女性中随机抽取一人**(即事件 A A A 已发生),那么这个女人为色盲者的(条件)**概率为

P ( B ∣ A ) = m M = P ( A B ) P ( A ) P(B|A) = \frac {m} {M} = \frac {P(AB)} {P(A)} P(BA)=Mm=P(A)P(AB)

5.全概率公式和贝叶斯公式

  • 准备知识:首先我们看一下概率乘法公式和样本空间划分的定义;

    • 由条件概率公式,可以得到概率的乘法公式

      $P(AB)=P(B|A)P(A) =P(A|B)P(B) $

    • 如果事件组,满足

      1. B 1 , B 2 , . . . B_1,B_2,... B1,B2,... 两两互斥,即 B i ∩ B j = ϕ , i ≠ j , i , j = 1 , 2 , . . . B_i\cap B_j = \phi,i \neq j ,i,j = 1,2,... BiBj=ϕi=j,i,j=1,2,...,且 P ( B i ) > 0 , i = 1 , 2 , . . . P(B_i)>0,i=1,2,... P(Bi)>0,i=1,2,...
      2. B 1 ∪ B 2 ∪ . . . = Ω B_1 \cup B_2 \cup ... = \Omega B1B2...=Ω

​ 则称事件组 B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 $ \Omega$ 的一个划分。

  • 全概率公式

    B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 $ \Omega$ 的一个划分, A A A 为任一事件,则

    P ( A ) = ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) P(A) = \sum_{i=1}^{\infty } {P(B_i)}P(A|B_i) P(A)=i=1P(Bi)P(ABi)

    称为全概率公式。

    根据全概率公式和概率乘法公式,我们可以得到:

  • 贝叶斯公式

    B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是样本空间 $ \Omega$ 的一个划分,则对任一事件 A ( P ( A ) > 0 ) A(P(A)>0) A(P(A)>0) ,有

    ​ $P(B_i|A) =\frac {P(B_i A)} {P(A)} = \frac {P(A|B_i )P(B_i)} {\sum_{j=1}^{\infty }P( B_j)P(A|B_j)} ,i=1,2,… $

    称上式为贝叶斯公式,称 P ( B i ) ( i = 1 , 2 , . . . ) P(B_i)(i=1,2,...) P(Bi)(i=1,2,...) 为先验概率, P ( B i ∣ A ) ( i = 1 , 2 , . . . ) P(B_i|A)(i=1,2,...) P(BiA)i=1,2,...为后验概率。

例子:

​ 在实际中,常取对样本空间 Ω \Omega Ω 的有限划分 B 1 , B 2 , . . . , B n B_1,B_2,...,B_n B1,B2,...,Bn B i B_i Bi 视为导致试验结果 A A A 发生的“原因”,而 P ( B i ) P(B_i) P(Bi) 表示各种“原因”发生的可能性大小,故称为先验概率; P ( B i ∣ A ) P(B_i|A) P(BiA) 则反应当试验产生了结果 A A A 之后,再对各种“原因”概率的新认识,故称为后验概率 。

​ 假定用血清甲胎蛋白法诊断肝癌。用 C C C 表示被检验者有肝癌这一事件,用 A A A 表示被检验者为阳性反应这一事件。当前有肝癌的患者被检测呈阳性反应的概率为0.95。即 P ( A ∣ C ) = 0.95 P(A|C) = 0.95 P(AC)=0.95 。当前非肝癌的患者被检测呈阴性反应的概率为0.9。即 P ( A ‾ ∣ C ‾ ) = 0.90 P(\overline {A}|\overline {C}) = 0.90 P(AC)=0.90 。若某人群中肝癌患者概率为0.0004,即$P© = 0.0004 $,现在有一人呈阳性反应,求此人确为肝癌患者的概率是多少?

P ( C ∣ A ) = P ( C ) P ( A ∣ C ) P ( C ) P ( A ∣ C ) + P ( C ‾ ) P ( A ∣ C ‾ ) = 0.0004 ∗ 0.95 0.0004 ∗ 0.95 + 0.9996 ∗ 0.1 = 0.0038 P(C|A) = \frac {P(C)P(A|C)} {P(C)P(A|C)+P(\overline {C} )P(A|\overline {C})} =\frac {0.0004*0.95}{0.0004*0.95 + 0.9996*0.1} =0.0038 P(CA)=P(C)P(AC)+P(C)P(AC)P(C)P(AC)=0.00040.95+0.99960.10.00040.95=0.0038

二、随机变量

1.随机变量及其分布

  • 随机变量定义:

    E E E 是随机试验, Ω \Omega Ω 是样本空间,如果对于每一个 ω ∈ Ω \omega \in \Omega ωΩ 。都有一个确定的实数 X ( ω ) X(\omega) X(ω) 与之对应,若对于任意实 x ∈ R x \in R xR , 有 { ω : X ( ω ) < x } ∈ F \{\omega :X(\omega) < x \} \in F {ωX(ω)<x}F ,则称 Ω \Omega Ω 上的单值实函数 X ( ω ) X(\omega) X(ω) 为一个随机变量。

​ 从定义可知随机变量是定义在样本空间 Ω \Omega Ω 上,取值在实数域上的函数。由于它的自变量是随机试验的结果,而随机试验结果的出现具有随机性,因此,随机变量的取值也具有一定的随机性。这是随机变量与普通函数的不同之处。

描述一个随机变量,不仅要说明它能够取那些值,而且还要关心它取这些值的概率。因此,接下来引入随机变量的分布函数的概念。

  • 随机变量的分布函数定义:

​ 设 X X X 是一个随机变量,对任意的实数 x x x ,令
F ( x ) = P { X < = x } , x ∈ ( − ∞ , + ∞ ) F(x) = P \{ X<=x\} ,x \in (- \infty ,+ \infty) F(x)=P{X<=x},x(,+)
​ 则称 F ( x ) F(x) F(x) 为随机变量 x x x 的分布函数,也称为概率累积函数。

直观上看,分布函数 F ( x ) F(x) F(x) 是一个定义在 ( − ∞ , + ∞ ) (- \infty, + \infty) (,+) 上的实值函数, F ( x ) F(x) F(x)在点 x x x 处取值为随机变量 X X X 落在区间 ( − ∞ , + x ] (- \infty, + x] (,+x]上的概率 。分布函数(概率累积函数)很好理解,就是在一个区间范围内概率函数的累加。这个区间就是负无穷到当前节点。

2. 离散型随机变量

​ 如果随机变量 X X X 的全部可能取值只有有限多个或可列无穷多个,则称 X X X 为离散型随机变量。掷骰子的结果就是离散型随机变量。

​ 对于离散型随机变量 X X X 可能取值为 x k x_k xk的概率为:
P { X = x k } = p k , k = 1 , 2 , . . . P \{ X =x_k \} =p_k,k=1,2,... P{X=xk}=pk,k=1,2,...
则称上式为离散型随机变量 X X X 的分布律。

我们可以用下表来表示分布律:

X X X x 1 x_1 x1 x 2 x_2 x2 x n x_n xn
p k p_k pk p 1 p_1 p1 p 2 p_2 p2 p n p_n pn

离散型随机变量的分布函数为:
F ( x ) = P { X < = x } = ∑ x k < = x P { X = x k } = ∑ x k < = x P k F (x) = P \{ X<=x \} =\sum_{x_k <=x}{ P \{ X=x_k \} } = \sum_{x_k <=x}{ P_k} F(x)=P{X<=x}=xk<=xP{X=xk}=xk<=xPk

3.常见的离散型分布

1.伯努利实验,二项分布
  • 定义:

    如果一个随机试验只有两种可能的结果 A A A A ‾ \overline A A,并且

P ( A ) = p , P ( A ‾ ) = 1 − p = q P(A) = p,P(\overline A) =1-p=q P(A)=pP(A)=1p=q

其中, 0 < p < 1 0<p<1 0<p<1 ,则称此试验为Bernoulli(伯努利)试验. Bernoulli试验独立重复进行 n n n 次,称为 n n n 重伯努利试验。

例子:

从一批产品中检验次品,在其中进行有放回抽样 n n n 次,抽到次品称为“成功”,抽到正品称为“失败“,这就是 n n n 重Bernoulli试验。


A = { n 重 伯 努 利 试 验 中 A 出 现 k 次 } A = \{ n重伯努利试验中A出现k次\} A={nAk}

P ( A k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . n . P(A_k) =C^k_np^k(1-p)^{n-k},k=0,1,2,...n. P(Ak=Cnkpk(1p)nk,k=0,1,2,...n.
这就是著名的二项分布,常记作 B ( n , k ) B(n,k) B(nk

解释:一共抽了 n n n 次, k ( k < n ) k(k<n) k(k<n) 次抽中了 A A A ,概率为 p p p ,那么 n − k n-k nk 次抽中了非 A A A,概率为 1 − p 1-p 1p 组合的次数就是 C n k C^k_n Cnk 。所以 P ( A k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . n . P(A_k) =C^k_np^k(1-p)^{n-k},k=0,1,2,...n. P(Ak=Cnkpk(1p)nk,k=0,1,2,...n.

  • 分布函数:

若随机变量 X X X 的分布律为:
P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . n . P \{ X =k \} =C^k_np^k(1-p)^{n-k},k=0,1,2,...n. P{X=k}=Cnkpk(1p)nk,k=0,1,2,...n.
其分布函数为:
F ( x ) = ∑ k = [ x ] C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . n . F(x) = \sum_{k=}^{[x]} {C^k_np^k(1-p)^{n-k}},k=0,1,2,...n. Fx=k=[x]Cnkpk(1p)nk,k=0,1,2,...n.
其中, [ x ] [x] [x] 表示下取整,即不超过 x x x 的最大整数。

4.随机变量的数字特征

1.数学期望
  • 离散型:设离散型随机变量 X X X 的分布律为 P { X = x i } = p i , i = 1 , 2 , . . . , P \{ X=x_i\} = p_i ,i =1,2,..., P{X=xi}=pi,i=12... 若级数 ∑ i ∣ x i ∣ p i \sum_{i} {|x_i|p_i} ixipi 收敛,则称级数 ∑ i x i p i \sum_{i} {x_ip_i} ixipi 的和为随机变量 X X X 的数学期望。记为 E ( X ) E(X) E(X) ,即:

E ( X ) = ∑ i x i p i E(X) = \sum_{i} {x_ip_i} E(X)=ixipi

  • 设连续型随机变量 X X X 的概率密度函数为 f ( x ) f(x) f(x) ,若积分 ∫ − ∞ + ∞ ∣ x ∣ f ( x ) d x \int_{- \infty}^{+ \infty}{|x|f(x)}dx +xfxdx 收敛, 称积分 ∫ − ∞ + ∞ x f ( x ) d x \int_{- \infty}^{+ \infty}{xf(x)}dx +xfxdx 的值为随机变量 X X X 的数学期望,记为 E ( X ) E(X) E(X) ,即:
    E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)= \int_{- \infty}^{+ \infty}{xf(x)}dx E(X)=+xfxdx
    E ( X ) E(X) E(X) 又称为均值。

数学期望代表了随机变量取值的平均值,是一个重要的数字特征。数学期望具有如下性质:

  1. c c c 是常数,则 E ( c ) = c E(c) =c E(c)=c ;
  2. E ( a X + b Y ) = a E ( X ) + b E ( Y ) E(aX+bY) = aE(X) +bE(Y) E(aX+bY)=aE(X)+bE(Y) , 其中a, b为任意常数;
  3. X , Y X, Y X,Y 相互独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY) = E(X)E(Y) E(XY)=E(X)E(Y)
2.方差
  • X X X 为随机变量,如果 E { [ X − E ( X ) ] 2 } E\{ [X-E(X)]^2\} E{[XE(X)]2} 存在,则称 E { [ X − E ( X ) ] 2 } E\{ [X-E(X)]^2\} E{[XE(X)]2} X X X 的方差。记为 V a r ( X ) Var(X) Var(X) , 即:

V a r ( X ) = E { [ X − E ( X ) ] 2 } Var (X) =E\{ [X-E(X)]^2\} VarX=E{[XE(X)]2}

​ 并且称 V a r ( X ) \sqrt{Var(X)} Var(X) X X X 的标准差或均方差。

方差是用来描述随机变量取值相对于均值的离散程度的一个量,也是非常重要的数字特征。方差有如下性质:

  1. c c c 是常数,则 V a r ( c ) = 0 Var(c) =0 Var(c)=0 ;
  2. V a r ( a X + b ) = a 2 V a r ( X ) Var(aX+b) = a^2Var(X) Var(aX+b)=a2Var(X) , 其中a, b为任意常数;
  3. X , Y X, Y X,Y 相互独立,则 V a r ( X + Y ) = V a r ( X ) + V a r ( Y ) Var(X+Y) = Var(X) +Var(Y) Var(X+Y)=Var(X)+Var(Y)
3.协方差和相关系数

协方差和相关系数都是描述随机变量 X X X 与随机变量 Y Y Y 之间的线性联系程度的数字量。

  • X , Y X, Y X,Y 为两个随机变量,称 E { [ X − E ( X ) ] [ Y − E ( Y ) ] } E\{ [X-E(X)] [Y-E(Y)]\} E{[XE(X)][YE(Y)]} X X X Y Y Y 的协方差,记为 C o v ( X , Y ) Cov(X, Y) Cov(X,Y),即:
    C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X, Y) = E\{ [X-E(X)] [Y-E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]}
    协方差有如下性质:

    1. C o v ( X , Y ) = C o v ( Y , X ) Cov(X, Y) = Cov(Y, X) Cov(X,Y)=Cov(Y,X) ;

    2. C o v ( a X + b , c Y + d ) = a c C o v ( X , Y ) Cov(aX+b,cY+d) =ac Cov( X,Y) Cov(aX+bcY+d)=acCov(XY) ,其中, a , b , c , d a,b,c,d a,b,c,d 为任意常数;

    3. C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y) =Cov( X_1,Y) +Cov( X_2,Y) Cov(X1+X2Y)=Cov(X1Y)+Cov(X2Y) ;

    4. C o v ( X , Y ) = E ( X , Y ) − E ( X ) E ( Y ) Cov(X,Y) =E( X,Y) -E( X)E(Y) Cov(XY)=E(XY)E(X)E(Y) ; 当 X , Y X,Y X,Y 相互独立时,有 C o v ( X , Y ) = 0 Cov(X,Y) = 0 Cov(XY)=0;

    5. ∣ C o v ( X , Y ) ∣ < = V a r ( X ) V a r ( Y ) |Cov(X,Y)| <= \sqrt {Var(X)} \sqrt {Var(Y)} Cov(XY)<=Var(X) Var(Y) ;

    6. C o v ( X , X ) = V a r ( X ) Cov(X,X) =Var( X) Cov(XX)=Var(X) ;

  • V a r ( X ) > 0 , V a r ( Y ) > 0 \sqrt {Var(X)} >0 ,\sqrt {Var(Y)} >0 Var(X) >0Var(Y) >0 时,称
    ρ ( X , Y ) = C o v ( X , Y ) V a r ( X ) V a r ( Y ) \rho(X,Y) = \frac{Cov(X,Y)}{\sqrt {Var(X)} \sqrt {Var(Y)}} ρX,Y=Var(X) Var(Y) Cov(XY)
    X , Y X,Y X,Y 的相关系数,它是无纲量的量(也就是说没有单位,只是个代数值)。

  • 基本上我们都会用相关系数来衡量两个变量之间的相关程度。相关系数在-1到1之间,小于零表示负相关,大于零表示正相关。绝对值 ∣ ρ ( X , Y ) ∣ |\rho(X,Y)| ρX,Y 表示相关度的大小。越接近1,相关度越大。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值