NKOJ 3793 礼物和糖果(背包dp)

何老板有M元钱,面临N种礼品选择,每种礼品购买x件会得到Ai*x+Bi颗糖果。目标是最大化糖果数。通过将每个物品拆分为两部分,应用背包DP算法,可以找到何老板能获得的最大糖果数。样例输入和输出展示了具体计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P3793礼物和糖果

问题描述

何老板要给大家买节日礼物,他有M元钱,学校小卖部有N种礼品,因为店长和何老板是熟人,所以若第i种礼品买x(x>0)件的话,店长会给何老板Ai*x+Bi颗糖果。
因为何老板非常喜欢吃糖,所以他希望获得的糖果越多越好。现给出每种礼品的单价Wi、Ai值与Bi值,问何老板最多能得到多少颗糖果?

输入格式

第一行,两个空格间隔的整数M和N
接下来N行,每行三个整数Wi, Ai 和 Bi,描述一种礼物的情况。

输出格式

一行,一个整数,表示何老板能得到的最大糖果数

样例输入

100 2
10 2 1
20 1 1

样例输出

21

提示

1 ≤ M ≤ 2000
1 ≤ N ≤ 1000
0 ≤ Ai, Bi ≤ 2000
1 ≤ Wi ≤ 2000


将一个物品拆成两个物品,一个物品价格为 A[i]+B[i] ,只能买一个。
另一个物品价格为 A[i] ,可以买无限个。
然后背包dp即可。


代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#define N 2222
using namespace std;
int m,n,W[N],A[N],B[N],F[N];
int main()
{
    int i,j,k;
    scanf("%d%d",&m,&n);
    for(i=1;i<=n;i++)scanf("%d%d%d",&W[i],&A[i],&B[i]);
    for(i=1;i<=n;i++)
    {
        for(j=m;j>=W[i];j--)F[j]=max(F[j],F[j-W[i]]+A[i]+B[i]);
        for(j=W[i];j<=m;j++)F[j]=max(F[j],F[j-W[i]]+A[i]);
    }
    cout<<F[m];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值