description
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,10
4
) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
idea
注意
- 先输出再判断是否该停止,否则会遗漏等于6174或0的等式
- 不足四位,补0
solution
#include<cstdio>
#include<algorithm>
using namespace std;
int main(){
int m = 0, n = 0, t, a[5];
scanf("%d", &t);
do{
if(m != 0) t = m - n;
m = n = 0;
for(int i = 0; i < 4; i++) {
a[i] = t % 10;
t /= 10;
}
sort(a, a + 4);
for(int i = 3; i >= 0; i--) m = m*10 + a[i];
for(int i = 0; i < 4; i++) n = n*10 + a[i];
printf("%04d - %04d = %04d\n", m, n, m - n);
}while(m - n != 6174 && m - n != 0);
return 0;
}