1019 数字黑洞/1069 The Black Hole of Numbers

126 篇文章 0 订阅
44 篇文章 0 订阅
本文介绍了如何编写一个程序,按照给定规则对4位正整数进行递归计算,直到达到Kaprekar常数6174的过程。程序通过输入一个数字,先排序后相减,直到结果为6174或0停止输出。
摘要由CSDN通过智能技术生成

description

给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。

输入格式:

输入给出一个 (0,10
4
) 区间内的正整数 N。

输出格式:

如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。

输入样例 1:

6767

输出样例 1:

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

输入样例 2:

2222

输出样例 2:

2222 - 2222 = 0000

idea

注意

  • 先输出再判断是否该停止,否则会遗漏等于6174或0的等式
  • 不足四位,补0

solution

#include<cstdio>
#include<algorithm>
using namespace std;
int main(){
	int m = 0, n = 0, t, a[5];
	scanf("%d", &t);
	do{
		if(m != 0) t = m - n;
		m = n = 0;
		for(int i = 0; i < 4; i++) {
			a[i] = t % 10;
			t /= 10;
		}
		sort(a, a + 4);
		for(int i = 3; i >= 0; i--) m = m*10 + a[i];
		for(int i = 0; i < 4; i++) n = n*10 + a[i];
		printf("%04d - %04d = %04d\n", m, n, m - n);
	}while(m - n != 6174 && m - n != 0);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值