description
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入格式:
输入第一行给出一个不超过 10
5
的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以一个空格分隔。
输出格式:
在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。
输入样例:
4
0.1 0.2 0.3 0.4
输出样例:
5.00
idea
出现的次数与位置有关。例如题干中的0.1在第一个位置上,左边没人了,只能放在开头有4(n-i+1=4-1+1)中片段;0,2在第二个位置上,左边呐可以放前边的一个元素,也可以不放,有两种可能(),(0.1)右边有0.3,0.4也是可放,可不放,有3种可能(),(0.3),(0.3, 0.4),左右组合有6(i*(n-i+1)=2*3)种可能。
N比较大时,double类型的值多次累加导致的精度误差,因为输入为十进制小数,存储到double中时,计算机内部使用二进制表示,且计算机的字长有限,有的十进制浮点数使用二进制无法精确表示只能无限接近,在字长的限制下不可避免会产生舍入误差,这些细微的误差在N较大时多次累加会产生较大误差,所以建议不要使用double类型进行多次累加的精确计算,而是转为能够精确存储的整型。尝试把输入的double类型的值扩大1000倍后转为long long整型累加,同时使用long long类型保存sum的值,输出时除以1000.0转为浮点型再输出。
solution1(测试点2,3超时)
直接暴力计算
#include<stdio.h>
int main(){
int n;
double a[100010], ans = 0, t;
scanf("%d", &n);
for(int i = 0; i < n; i++)
scanf("%lf", a + i);
for(int i = 0; i < n; i++){
t = 0;
for(int j = i; j < n; j++){
t += a[j];
ans += t;
}
}
printf("%.2f", ans);
return 0;
}
solution2
#include<stdio.h>
int main(){
int n;
double t;
long long ans = 0;
scanf("%d", &n);
for(int i = 1; i <= n; i++){
scanf("%lf", &t);
ans += (long long)(t*1000) * i * (n - i + 1);
}
printf("%.2f", ans / 1000.0);
return 0;
}