1049 数列的片段和/1104 Sum of Number Segments

126 篇文章 0 订阅
44 篇文章 0 订阅
文章讨论了如何计算正整数数列中所有连续片段的和,考虑到double类型在大数计算中的精度问题,提出将double值转换为longlong整型以减小误差。Solution2给出了使用longlong进行精确计算的方法。
摘要由CSDN通过智能技术生成

description

给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。

给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。

输入格式:

输入第一行给出一个不超过 10
5
的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以一个空格分隔。

输出格式:

在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。

输入样例:

4
0.1 0.2 0.3 0.4

输出样例:

5.00

idea

出现的次数与位置有关。例如题干中的0.1在第一个位置上,左边没人了,只能放在开头有4(n-i+1=4-1+1)中片段;0,2在第二个位置上,左边呐可以放前边的一个元素,也可以不放,有两种可能(),(0.1)右边有0.3,0.4也是可放,可不放,有3种可能(),(0.3),(0.3, 0.4),左右组合有6(i*(n-i+1)=2*3)种可能。
N比较大时,double类型的值多次累加导致的精度误差,因为输入为十进制小数,存储到double中时,计算机内部使用二进制表示,且计算机的字长有限,有的十进制浮点数使用二进制无法精确表示只能无限接近,在字长的限制下不可避免会产生舍入误差,这些细微的误差在N较大时多次累加会产生较大误差,所以建议不要使用double类型进行多次累加的精确计算,而是转为能够精确存储的整型。尝试把输入的double类型的值扩大1000倍后转为long long整型累加,同时使用long long类型保存sum的值,输出时除以1000.0转为浮点型再输出。

solution1(测试点2,3超时)

直接暴力计算

#include<stdio.h>
int main(){
	int n;
	double a[100010], ans = 0, t;
	scanf("%d", &n);
	for(int i = 0; i < n; i++)
		scanf("%lf", a + i);
	for(int i = 0; i < n; i++){
		t = 0;
		for(int j = i; j < n; j++){
			t += a[j];
			ans += t;
		}
	}
	printf("%.2f", ans);
	return 0;
} 

solution2

#include<stdio.h>
int main(){
	int n;
	double t;
	long long ans = 0;
	scanf("%d", &n);
	for(int i = 1; i <= n; i++){
		scanf("%lf", &t);
		ans += (long long)(t*1000) * i * (n - i + 1); 
	}
	printf("%.2f", ans / 1000.0);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值