八数码问题

八数码难题

题目描述

3 × 3 3\times 3 3×3 的棋盘上,摆有八个棋子,每个棋子上标有 1 1 1 8 8 8 的某一数字。棋盘中留有一个空格,空格用 0 0 0 来表示。空格周围的棋子可以移到空格中。要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了使题目简单,设目标状态为 123804765 123804765 123804765),找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变。

输入格式

输入初始状态,一行九个数字,空格用 0 0 0 表示。

输出格式

只有一行,该行只有一个数字,表示从初始状态到目标状态需要的最少移动次数。保证测试数据中无特殊无法到达目标状态数据。

样例 #1

样例输入 #1

283104765

样例输出 #1

4

提示

样例解释

图中标有 0 0 0 的是空格。绿色格子是空格所在位置,橙色格子是下一步可以移动到空格的位置。如图所示,用四步可以达到目标状态。

并且可以证明,不存在更优的策略。

solution

最小操作次数问题考虑bfs

#include<iostream>
#include<queue>
#include<map>
#include<string>
#include<algorithm>
using namespace std;
string begin, end, t;
map<string, int> mp;
int n, d, k, x, y;
int X[4] = {-1, 1, 0, 0};//方向偏移数组
int Y[4] = {0, 0, -1, 1};//上 下 左 右 


int bfs(string s){
	queue<string> q;//辅助队列 
	q.push(s);//初始状态入队 
	while(!q.empty()){
		t = q.front();//访问队首元素 
		q.pop();//队首元素出队
		if(t == end) return mp[t];//首次到达目标状态 ,得到最少操作次数 
		k = t.find('0');//找到空位置0在状态串中的位置  
		for(int i = 0; i < 4; i++){
			x = k / 3 + X[i];//一维坐标转二维坐标 
			y = k % 3 + Y[i];
			if(x < 0 || x >= 3 || y < 0 || y >= 3) continue;//非法坐标
			d = mp[t];
			swap(t[k], t[x * 3 + y]);//交换 
			if(!mp.count(t)) {//确保无重复操作 
				mp[t] = d + 1;
				q.push(t);//把该状态入队 
			}
			swap(t[k], t[x * 3 + y]); //还原,以判断下一个相邻变换 
		}
	}
}

int main(){
	cin >> begin;
	end = "123804765"; 
	cout << bfs(begin);
	return 0;
}

青蛙跳杯子(友好版)

在这里插入图片描述

在这里插入图片描述

solution

end作为变量名会有歧义,过不了蓝桥杯编译,以后要避开哦

#include<iostream>
#include<string>
#include<queue>
#include<map>
#include<algorithm>
using namespace std;
string start, aim, t;
map<string, int> mp;
int X[6] = {-3, -2, -1, 1, 2, 3};
int n, k, p, d;

int bfs(string s){
	queue<string> q;
	q.push(s);
	while(!q.empty()){
		t = q.front();
		q.pop();
		if(t == aim) return mp[t];
		k = t.find('*');
		for(int i = 0; i < 6; i++){
			p = k + X[i];
			if(p < 0 || p >= n) continue;
			d = mp[t];
			swap(t[k], t[p]);
			if(!mp.count(t)){
				mp[t] = d + 1;
				q.push(t);
			}
			swap(t[k], t[p]);
		}
	}
}

int main(){
	cin >> start >> aim;
	n = start.size();
	cout << bfs(start);	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值