矩阵范数与向量范数的公式及其理解

矩阵是什么?

我们都知道映射指的是一个空间 R m \mathbb{R}^m Rm到另一个空间 R n \mathbb{R}^n Rn的变换关系,狭义的函数其实是映射的一种特例,特指实数集间 R 1 \mathbb{R}^1 R1的映射关系。

在所有映射中,我们最常见的是线性映射,对这种线性映射关系,我们是用矩阵来刻画,比如我们要将一个向量 x ∈ R m x \in \mathbb{R}^m xRm映射到另外一个空间 R n \mathbb{R}^n Rn中,那么我们就对其左乘一个矩阵 A A A,于是 y n × 1 = A n × m x m × 1 y_{n \times 1}=A_{n \times m} x_{m \times 1} yn×1=An×mxm×1,这里矩阵的角色就好比函数中的函数体 f ( x ) f(x) f(x)

研究矩阵的性质有助于我们理解这个矩阵是如何作用于输入的,从而揭露了从输入到输出之间的规律。比如:

矩阵的秩反映了映射目标向量空间的维数,比如对于变换 y = A x y=Ax y=Ax,如果 A A A的秩分别1,2,3,那么表示新的向量 y y y的维数分别是1,2,3,所以秩其实就是描述了这个变换矩阵会不会将输入的向量空间降维,如果 y y y没有降维(与 x x x维数一样),则 A A A为满秩。

可逆矩阵反映了线性映射的可逆性,假如 A A A是可逆的,那么对于变换 y = A x y=Ax y=Ax,就有 x = A − 1 y x=A^{-1}y x=A1y

矩阵范数则反映了线性映射把一个向量映射为另一个向量,向量的“长度”缩放的比例,或者可以理解为矩阵的范数就是一种用来刻画变换强度大小的度量。另外,各种范数之间是等价的,这些主要介绍他们的数学定义。

矩阵范数

常用的矩阵范数:

F-范数:Frobenius范数,即矩阵元素绝对值的平方和再开方,对应向量的2范数, ∥ A ∥ F = ( ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 ) 1 2 \|A\|_{F}=\left(\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}\right)^{\frac{1}{2}} AF=(i=1mj=1naij2)21
F范数经常用来衡量两个矩阵是否相似,比如要使矩阵 B B B 与矩阵 A A A相似,那么就可以优化它们的误差矩阵 B − A B-A BA 的F范式。

1-范数:列和范数,即矩阵每列向量元素绝对值之和中取最大值, ∥ A ∥ 1 = max ⁡ j ∑ i = 1 m ∣ a i , j ∣ \|A\|_{1}=\max _{j} \sum_{i=1}^{m}\left|a_{i, j}\right| A1=maxji=1mai,j

2-范数:谱范数,即 A T A A^{T} A ATA矩阵的最大特征值的开平方, ∥ A ∥ 2 = λ 1 , λ 1 \|A\|_{2}=\sqrt{\lambda_{1}}, \lambda_{1} A2=λ1 ,λ1 A T A A^{T} A ATA的最大特征值

∞ \infty -范数:行和范数,即矩阵每行向量元素绝对值之和中取最大值, ∥ A ∥ ∞ = max ⁡ i ∑ j = 1 n ∣ a i , j ∣ \|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i, j}\right| A=maxij=1nai,j

向量范数

常用的向量范数:

2-范数:Euclid范数(欧几里得范数),也就是向量长度,向量元素绝对值的平方和再开方, ∥ x ∥ 2 = ( ∑ i = 1 N ∣ x i ∣ 2 ) 1 2 \|x\|_{2}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{2}\right)^{\frac{1}{2}} x2=(i=1Nxi2)21

1-范数:即向量元素绝对值之和, ∥ x ∥ 1 = ∑ i = 1 N ∣ x i ∣ \|x\|_{1}=\sum_{i=1}^{N}\left|x_{i}\right| x1=i=1Nxi

∞ \infty -范数:即所有向量元素绝对值中的最大值, ∥ x ∥ ∞ = max ⁡ ∣ x i ∣ \|x\|_{\infty}=\max \left|x_{i}\right| x=maxxi

− ∞ -\infty 范数:即所有向量元素绝对值中的最小值, ∥ x ∥ − ∞ = min ⁡ i ∣ x i ∣ \|x\|_{-\infty}=\min _{i}\left|x_{i}\right| x=minixi

p-范数:即向量元素绝对值的p次方和的1/p次幂,2范数就是p范数的特例, ∥ x ∥ p = ( ∑ i = 1 N ∣ x i ∣ p ) 1 p \|x\|_{p}=\left(\sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} xp=(i=1Nxip)p1

0-范数,向量中非零元素的个数。

如果对你有帮助,请点个赞:-D

  • 27
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值