Ubuntu+VScode+Opencv4.5.1 如何将OpenCV快速集成于自己的项目中?

编程环境为:Ubuntu20.04+VScode+opencv4.5.1

 

第一步(准备工作):Ubuntu 20.04 下安装配置 VScode 的 C/C++ 开发环境

参考:https://blog.csdn.net/weixin_44012745/article/details/106183331

 

第二步(准备工作):Ubuntu 20.04下编译供C++/python使用的opencv

参考:https://blog.csdn.net/WJ_SHI/article/details/107605439

2.1 下载opencv源码  https://opencv.org/       eg: opencv-4.5.1.zip

2.2 安装依赖

# libjasper-dev包无法定位,增加库并更新atp

sudo add-apt-repository "deb http://security.ubuntu.com/ubuntu xenial-security main"

sudo apt-get update

# 安装opencv依赖

sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg-dev libtiff-dev libswscale-dev libpng-dev libjasper-dev

2.3 安装opencv

# install cmake 工具

sudo apt-get install cmake

# 解压.zip,将解压后文件移动到/opt目录下

cd /***    # 下载的opencv-4.5.1.zip文件所在目录

unzip opencv-4.5.1.zip

sudo mv opencv-4.5.1  /opt

cd /opt/opencv-4.5.1

sudo mkdir build

cd build

sudo cmake ..

sudo make

sudo make install

注意:最后所有文件将被安装到目录“/usr/local/”下面。

2.4 修改环境变量配置

安装完成后,手动创建opencv.pc:

cd /usr/local/lib

sudo mkdir pkgconfig && cd pkgconfig

sudo gedit opencv.pc

然后添加:

prefix=/usr/local
exec_prefix=${prefix}
includedir=/usr/local/include
libdir=/usr/local/lib
 
Name: OpenCV
Description: Open Source Computer Vision Library
Version: 4.4.0
Libs: -L${exec_prefix}/lib -lopencv_stitching -lopencv_superres -lopencv_videostab -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired -lopencv_ccalib -lopencv_dnn_objdetect -lopencv_dpm -lopencv_face -lopencv_photo -lopencv_freetype -lopencv_fuzzy -lopencv_hdf -lopencv_hfs -lopencv_img_hash -lopencv_line_descriptor -lopencv_optflow -lopencv_reg -lopencv_rgbd -lopencv_saliency -lopencv_stereo -lopencv_structured_light -lopencv_phase_unwrapping -lopencv_surface_matching -lopencv_tracking -lopencv_datasets -lopencv_text -lopencv_dnn -lopencv_plot -lopencv_xfeatures2d -lopencv_shape -lopencv_video -lopencv_ml -lopencv_ximgproc -lopencv_calib3d -lopencv_features2d -lopencv_highgui -lopencv_videoio -lopencv_flann -lopencv_xobjdetect -lopencv_imgcodecs -lopencv_objdetect -lopencv_xphoto -lopencv_imgproc -lopencv_core
Libs.private: -ldl -lm -lpthread -lrt
Cflags: -I${includedir}

更改环境变量,输入命令:

sudo gedit /etc/bash.bashrc

打开之后,在文件最后面添加以下内容:

export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig:$PKG_CONFIG_PATH

保存退出,opencv基本上就安装完成了。通过 pkg-config 查看 opencv 版本:

pkg-config --modversion opencv

在bash.bashrc文件末尾加上

PKG_CONFIG=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig

export PKG_CONFIG_PATH

保存后退出,执行以下指令测试opencv配置成功:

ldconfig -p | grep opencv

补充:

完成以上步骤后,创建OpenCV项目,运行后可能会报错:“libopencv_***.so.4.5: cannot open shared object file”,出现此问题原因:opencv库与程序之间缺少链接。

解决办法:在/etc/ld.so.conf.d目录中创建一个名字为opencv.conf的文件,在里面写入libopencv_core.so.2.4所在的路径(/usr/local/lib),然后运行第二条命令,完美解决:

sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'

sudo ldconfig -v  

题外:

若觉得libopencv_***.so文件放在/usr/local/lib文件下太乱,可按照以下操作将文件统一移动到/usr/loacal/lib/opencv4/opencv2文件中:

执行语句:

sudo mv /usr/local/lib/lib* /usr/loacal/lib/opencv4/opencv2

但是注意需要修改环境配置及链接

sudo gedit /etc/ld.so.conf.d/opencv.conf

将opencv.conf文件中原路径“/usr/local/lib” 改成“/usr/local/lib/opencv4/opencv2”

sudo gedit /usr/local/lib/pkgconfig/opencv.pc

将opencv.pc文件中libdir原路径“/usr/local/lib” 改成“/usr/local/lib/opencv4/opencv2”,如图:“

最后一步,测试opencv配置成功,链接ldconfig:

ldconfig -p | grep opencv
sudo ldconfig -v   # 这一步一定要执行,链接成功

注:每次更新了/usr/local/lib库,都需要执行ldconfig更新一下链接库,否则执行程序的时候会出现"无法找到库文件lib***.so"报错!

2.5 python 链接opencv

注:上述参考链接安装过程,仅能实现C++编译使用opencv,若需要在python环境中使用,需安装opencv-python。

pip install opencv-python

进行python测试,如下:

$ python
Python 3.8.5 (default, Jul 28 2020, 12:59:40) 
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cv2
>>> print(cv2.__version__)
4.5.1

 

第三步:VScode将OpenCV集成于自己的项目中(独立运行,不依赖系统编译环境)

1. 新建VScode项目

Step1:新建项目文件

将/usr/local/include 内的/opencv4/opencv2/文件拷贝到项目文件/utils/opencv4/opencv2/include中

sudo cp /usr/local/include/opencv4/opencv2  项目路径/utils/opencv4/opencv2/include

将/usr/local/lib 内的有关opencv的所有libopencv_***.so文件拷贝到项目文件/utils/opencv4/opencv2/lib中

sudo cp /usr/local/lib/opencv4/opencv2/lib*  项目路径/utils/opencv4/opencv2/lib

或 sudo cp /usr/local/lib/lib*  项目路径/utils/opencv4/opencv2/lib

Step2:VScode打开源码所在的文件夹:

   

 

2. 测试系统编译OpenCV的运行情况

Step1:生成几个关键.json文件

在VScode界面选择源码所在文件(本例中main.cpp),Ctrl+shift+D,然后点击运行和调试,选择"C++(GDB/LLDB)",选择“g++ -生成和调试活动文件“,生成“launch.json”和“tasks.json”文件;

launch.json文件配置如下:

{
    // 使用 IntelliSense 了解相关属性。 
    // 悬停以查看现有属性的描述。
    // 欲了解更多信息,请访问: https://go.microsoft.com/fwlink/?linkid=830387
    "version": "0.2.0",
    "configurations": [        
        {
            "name": "g++.exe - 生成和调试活动文件",
            "type": "cppdbg",                                 // 只能是cppdbg
            "request": "launch",                              // launch:启动,attach:附加
            "program": "${fileDirname}/${fileBasenameNoExtension}",   // 需要调试的程序
            "args": [],                                       // 调试时传递给程序的参数
            "stopAtEntry": false,                             // 调试时是否停在程序入口:{true:是,false:否}
            "cwd": "${workspaceFolder}",                      // 工作目录
            "environment": [],                                // 额外的环境变量
            "externalConsole": true,                         // true:输出到外部终端;false:只输出到软件终端(有显示不全的可能)
            "MIMode": "gdb",
            "setupCommands": [      // 暂时不知道作用
                {
                    "description": "为 gdb 启用整齐打印",
                    "text": "-enable-pretty-printing",
                    "ignoreFailures": true
                }
            ],
            "preLaunchTask": "C/C++: g++ build active file",   // 预编译任务名称,和tasks.json中的label必须相同
            "miDebuggerPath": "/usr/bin/gdb"                   // 调试gdb路径
        }
    ]
}

Ctrl + Shift + P 打开搜索框,键入c++,会出现备选项目,选择“Edit configurations (JSON)“,生成“c_cpp_properties.json”;

Step2:配置Opencv的开发环境

这一步,与windows环境下VS配置Opencv开发环境思路相同,将OpenCV的include头文件所在路径和函数库的路径设置给编译器。

(1) 进入c_cpp_properties.json文件内进行配置修改。修改如下:

{
    "configurations": [
        {
            "name": "Linux",
            "includePath": [
                "${workspaceFolder}/**",               
                "/usr/include/opencv4", //请确保你的opencv opencv2头文件夹安装在这个目录
                "/usr/include/opencv4/opencv2"
            ],
            "defines": [],
            "compilerPath": "/usr/bin/gcc",
            "cStandard": "gnu17",
            "cppStandard": "gnu++14",
            "intelliSenseMode": "gcc-x64"
        }
    ],
    "version": 4
}

(2) 进入tasks.json文件内进行配置修改。修改如下:

{
    "tasks": [
        {
            "type": "cppbuild",
            "label": "C/C++: g++ build active file",
            "command": "/usr/bin/g++",
            "args": [
                "-g","-std=c++11", 
                //"${file}",                            // 单个cpp文件
                "${workspaceFolder}/Demo/*.cpp",        // 多个cpp文件
                "${workspaceFolder}/src/*.cpp",
                "-o", 
                "${fileDirname}/${fileBasenameNoExtension}",  // 要调试的程序,必须与launch.json文件中的"program"相同
                "-I", "${workspaceFolder}/include",     // 项目include文件
                "-I", "$/usr/include/opencv4",          // opencv安装的include文件路径
                "-I", "$/usr/include/opencv4/opencv2",  
                "-L", "$/usr/local/lib",                //opencv安装的lib文件路径
                "-l", "opencv_core",                    //.so文件,文件原名称“libopencv_core.so”,注意需去除“lib”
                "-l", "opencv_imgproc",
                "-l", "opencv_imgcodecs",
                "-l", "opencv_video",
                "-l", "opencv_ml",
                "-l", "opencv_highgui",
                "-l", "opencv_objdetect",
                "-l", "opencv_flann",
                "-l", "opencv_imgcodecs",
                "-l", "opencv_photo",
                "-l", "opencv_videoio",    
            ],
            "options": {
                "cwd": "${workspaceFolder}"
            },
            "problemMatcher": [
                "$gcc"
            ],
            "group": {
                "kind": "test",
                "isDefault": true
            },
            "detail": "Task generated by Debugger."
        }
    ],
    "version": "2.0.0"
}

Step3:回到测试文件,F5运行如下

 

3. 将OpenCV集成于自己的项目中

Step1:将编译安装于系统中OpenCV的include和lib文件拷贝于自己的项目文件中,如下图所示:

                          

 

Step2:配置OpenCV开发环境

(1) 进入c_cpp_properties.json文件内进行配置修改。修改如下:

{
    "configurations": [
        {
            "name": "Linux",
            "includePath": [
                "${workspaceFolder}/**",
                "${workspaceFolder}/include/**",
                "${workspaceFolder}/utils/opencv4/include", //请确保你的opencv opencv2头文件夹安装在这个目录
                "${workspaceFolder}/utils/opencv4/include/opencv2"
            ],
            "defines": [],
            "compilerPath": "/usr/bin/gcc",
            "cStandard": "gnu17",
            "cppStandard": "gnu++14",
            "intelliSenseMode": "gcc-x64"
        }
    ],
    "version": 4
}

(2) 进入tasks.json文件内进行配置修改。修改如下:

{
    "tasks": [
        {
            "type": "cppbuild",
            "label": "C/C++: g++ build active file",
            "command": "/usr/bin/g++",
            "args": [
                "-g","-std=c++11", 
                //"${file}",                                              // 单个cpp文件
                "${workspaceFolder}/Demo/*.cpp",                          // 多个cpp文件
                "${workspaceFolder}/src/*.cpp",
                "-o", 
                "${fileDirname}/${fileBasenameNoExtension}",              // 要调试的程序,必须与launch.json文件中的"program"相同
                "-I", "${workspaceFolder}/include",                       // 项目include文件
                "-I", "${workspaceFolder}/utils/opencv4/include",         // opencv的include文件路径
                "-I", "${workspaceFolder}/utils/opencv4/include/opencv2", 
                "-L", "${workspaceFolder}/utils/opencv4//lib",            //opencv的lib文件路径
                "-l", "opencv_core",                                      //.so文件,文件原名称“libopencv_core.so”,注意需去除“lib”
                "-l", "opencv_imgproc",
                "-l", "opencv_imgcodecs",
                "-l", "opencv_video",
                "-l", "opencv_ml",
                "-l", "opencv_highgui",
                "-l", "opencv_objdetect",
                "-l", "opencv_flann",
                "-l", "opencv_imgcodecs",
                "-l", "opencv_photo",
                "-l", "opencv_videoio",    
            ],
            "options": {
                "cwd": "${workspaceFolder}"
            },
            "problemMatcher": [
                "$gcc"
            ],
            "group": {
                "kind": "test",
                "isDefault": true
            },
            "detail": "Task generated by Debugger."
        }
    ],
    "version": "2.0.0"
}

Step3:编译运行,按F5运行

 

以上!!!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值