Francek Chen 的512天创作纪念日

在这里插入图片描述

Francek Chen 的512天创作纪念日

在这里插入图片描述

                      Francek Chen 的个人主页



机缘

  不知不觉的加入 CSDN 已经第四年了,最初我第一次接触 CSDN 技术社区是在 2022 年 4 月的时候,通过学长给我们推荐了几个 IT 社区平台,有 CSDN,博客园等等。CSDN 作为中国最大的程序员创作平台,我那时也是抱着好奇心注册了 CSDN 的账号,查看一些学习中难题,搜集一些学习资料。

  直到 2023 年下半年,在学校开始了大数据专业相关课程的学习,由此才开始萌生了创作的想法,然后在 11 月 28 日发布了人生中第一篇博客《大数据技术概述》,接下来就一直围绕着大数据主题、结合所学的课程进行创作。后来,学习人工智能和机器学习相关的知识和内容,拓宽自己的知识面,提升个人能力。通过写博客来记录学习的过程,也可以巩固知识,与大家分享;同时还能结交一些大佬,以他们为榜样,激励自己不断学习。

在这里插入图片描述


收获

  这段时间里,我经历了许多,感受到了成长的喜悦。在日常学习的繁忙中,我依然坚持创作的信念,将技术和经验分享给大家。但无论是繁忙还是减缓,每次打开创作的心扉,都是一次新鲜的体验。这一年来,是技术之路的探索,是表达能力的锻炼,更是自我的成长。每一篇博客都是一次对知识和经验的总结,也是对自己成长的见证。或许在技术领域取得了一些进步,或许在写作中找到了更加独特的风格,这一切都是在不断尝试和努力中实现的。

在这里插入图片描述
在这里插入图片描述

  经过这 512 天的创作时间,我得到了许多宝贵的收获。截至目前我创作了 314 篇文章,收获了 23943 位粉丝,获得了 1144727 次总访问量、15220 次点赞、5066 次评论、12760 次收藏以及我最喜欢的创作者身份认证大数据领域优质创作者。从新星创作者优质创作者,从 5k 粉丝2w 粉丝,从综合热榜第十六综合热榜第一,创作者周榜排名不断上升,都是一点一滴、不断积累的结果,这让我感到非常欣慰和鼓舞。

  2024 年 8 月第一次参加虚竹哥举办的活动——新星杯·14天创作挑战营·第2期,遗憾获得第6名,2025 年 1 月再一次参加了新星杯·14天创作挑战营·第7期,获得了第2名。这里要衷心感谢虚竹哥带我涨粉。

  此外,我还通过创作结识了许多志同道合的领域同行,他们不仅给予了我许多宝贵的建议和支持,还让我看到了更广阔的技术世界。在加入 CSDN 这个圈子慢慢的也是认识了很多创作者:AIGC领域优质创作者小ᶻ☡꙳ᵃⁱᵍᶜ꙳,全栈领域优质创作者景天科技苑,博客专家小虚竹征途黯然.韩楚风等等。

  在这里,还要感谢大家的支持和关注!


日常

  创作文章或许现在已经成为我学习生活的一部分。但主要我的创作和我的学习关系是在有限的精力下,去坚持创作博客,保持这个习惯。CSDN 已经成为我学习上非常重要的伙伴。现在养成了写博客的习惯,也方便之后回顾和查看,慢慢的让自己变的越来越好。无论是对现在的学习,还是对以后的工作,我都认为记录学习过程是一件非常有意义的事。同时,我也会将创作中的经验和教训应用到工作学习中,不断提高自己的工作效率和学习能力。

在这里插入图片描述


成就

1、我认为比较好的专栏有:

  1. 大数据技术基础
  2. Spark编程基础
  3. Python数据分析与挖掘
  4. Python机器学习
  5. 机器学习与数据挖掘实战

欢迎大家前来订阅,共同学习。嘿嘿🤭

2、我最喜欢的三篇文章是:

  1. 大数据存储技术(1)—— Hadoop简介及安装配置
  2. 【DeepSeek】在本地计算机上部署DeepSeek-R1大模型实战(完整版)
  3. 【智能大数据分析 | 实验四】Spark实验:Spark Streaming
  4. 【大数据分析&深度学习】在Hadoop上实现分布式深度学习

在这里插入图片描述

其中,创建回归模型部分代码如下:

public class SoftMaxRegression {

    public static MultiLayerNetwork softMaxRegression(int seed, int numRows, int numColumns, int outputNum) {

        Map<Integer, Double> momentumSchedule = new HashMap<>();
        momentumSchedule.put(0, 0.5);
        momentumSchedule.put(2, 0.6);
        momentumSchedule.put(4, 0.7);
        momentumSchedule.put(6, 0.8);
        momentumSchedule.put(8, 0.9);

        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
            .gradientNormalizationThreshold(1.0)
            .optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT)
            .updater(new Nesterovs(0.01, new MapSchedule(ScheduleType.ITERATION, momentumSchedule)))
            .list()
            .layer(0, new DenseLayer.Builder()
                .nIn(numColumns * numRows)
                .nOut(128)  // Example hidden layer size
                .activation(Activation.RELU)
                .build())
            .layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                .activation(Activation.SOFTMAX)
                .nIn(128)  // Input to output layer
                .nOut(outputNum)
                .build())
            .build();
        
        return new MultiLayerNetwork(conf);
    }
}

在App主类训练并评估模型,增加常量定义:

int epochs = 10;
int seed = 123;
int listenerFreq = batchSize / 5;

log.info("Build model......");
MultiLayerNetwork model = SoftMaxRegression.softMaxRegression(seed, numRows, numColumns, outputNum);
model.init();
model.setListeners(Collections.singletonList(new ScoreIterationListener(listenerFreq)));

log.info("Train model......");
model.fit(dataSetIterator, epochs);

log.info("Evaluate model......");
Evaluation evaluation = new Evaluation(outputNum);
// Correctly initialize test iterator with 'train' set to false
DataSetIterator testIterator = new MnistDataSetIterator(batchSize, false, numSamplesTest);

while (testIterator.hasNext()) {
    DataSet testMnist = testIterator.next();
    INDArray features = testMnist.getFeatures();
    INDArray labels = testMnist.getLabels();
    INDArray predict = model.output(features);
    evaluation.eval(labels, predict);
}

log.info("eval stats:\n" + evaluation.stats());
log.info("End......");

憧憬

1. 职业规划

  我希望能够继续深化自己的技术能力和领域知识,以后想做与大数据分析相关的工作和研究。

2. 创作规划

  在 CSDN 创作的过程中,发现自己有许多的不足。比如经常遇到词穷的时候,以及技术不够深入的点,在之后的学习过程中,多多阅读专业技术书籍,以扩宽自己知识面的深度和广度,给大家输出更加优质的文章。再一个就是希望通过不断的写作和学习,沉淀自己的技术功底。向跟高的平台前进!让我们一起加油吧~

在这里插入图片描述

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Francek Chen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值