题目描述
Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M × N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.
As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.
Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".
给你一个01矩阵,矩阵大小为M x N。(1 <= M , N <= 15)
每次操作选择一个格子,使得该格子与上下左右四个格子的值翻转。
至少多少次操作可以使得矩阵中所有的值变为0?
请输出翻转方案,若没有方案,输出"IMPOSSIBLE” 。
Input
Line 1: Two space-separated integers: M and N
Lines 2..M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white
第一行输入两个数:M和N。(1 <= M , N <= 15)
接下来M行,每行N个数,其值只为0或1。
Output
Lines 1..M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.
输出M行,每行N个数。
每个数代表该位置翻转次数。
Sample
Input
4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
Output
0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0
dfs
static class TaskA {
int m,n;
int[][] xy = {{0,1},{0,-1},{1,0},{-1,0}};//上下左右四个方向
int[][] a;//原始格子
int[][] map;
int[][] mapp;
int dfs(int x,int y,int m,int n) {
int c = a[x][y] + mapp[x][y];
for (int i = 0; i < 4; i++) {//
int xx = x + xy[i][0];
int yy = y + xy[i][1];
if(xx >= 0 && xx < m&&yy >= 0&& yy < n){
c += mapp[xx][yy];
}
}
return c % 2;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
m = in.nextInt();
n = in.nextInt();
a = new int[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
a[i][j] = in.nextInt();
}
}
int next[][] = new int[1 << n][n];//第一行采取二进制枚举
map = new int[m][n];
int d = Integer.MAX_VALUE;
for (int i = 0; i < 1 << n; i++) {
for (int j = 0; j < n; j++) {
next[i][n - 1 - j] = i >> j & 1;
}
}
for (int i = 0; i < next.length; i++) {
mapp = new int[m][n];
mapp[0] = next[i];
int sum = Integer.bitCount(i);//数字二进制形式1的总数
for (int j = 1; j < m; j++) {
for (int k = 0; k < n; k++) {
int res = dfs(j - 1,k,m,n);
if(res == 1){
mapp[j][k] = 1;
sum++;
}
}
}
boolean f = false;
for (int j = 0; j < n; j++) {//最后一行单独判断
int ress = dfs(m - 1,j,m,n);
if(ress == 1){
f = true;
}
}
if(f == true){
continue;
}
if(sum < d){
map = mapp;
d = sum;
}
}
if(d == Integer.MAX_VALUE){
System.out.println("IMPOSSIBLE");
}else{
for (int i = 0; i < map.length; i++) {
for (int j = 0; j < map[0].length; j++) {
if(j == 0){
System.out.print(map[i][j]);
}else{
System.out.print(" "+map[i][j]);
}
}
System.out.println();
}
}
}
}