线代笔记3

线性代数探讨了线性方程组、矩阵、向量之间的关系。基本变量与自由变量是线性方程组的两个关键概念,其中自由变量是线性无关的。零空间的维数等于非主元列的数量,列空间的维数则等于主元列的数量。线性相关性和线性无关性是向量组的重要特性,而秩决定了最大无关向量组的大小。矩阵在坐标变换和二次型理论中也有广泛应用。
摘要由CSDN通过智能技术生成
对应于系数矩阵初等变换后, 对应 于主元 变量 ,称为基本变量, 对应 非主元 变量 称为自由变量
基本变量可以表示成自由变量的 线性组合 ,也就是说,自由变量之间是 线性无关
可以被自由变量表示的基本变量和自由变量之前是线性相关的,自由变量之间是线性无关的,因为把基本变量右移,就成了一个系数不为零的齐次方程。比如x1=x3+x5,变量右移后变成x3+x5-x1=0,系数分别是1,1,-1,不
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值