线代笔记4

这节分清楚子空间的基和子空间的维数
首先关于基有两点:
    1.最小生成集,多删一个都不能生成空间V
    2.最大线性无关集,多加一个都会线性相关。
     空间的维数,即表达这个空间所需要的最少的基向量的个数。


列空间的基是主元列所对应的 列向量
零空间的基 是非主元列对应的 自由变量所对应的参数向量
所以求列空间和零空间的基直接把系数矩阵或增广矩阵按初等行变换化简为阶梯型矩阵。
即主元列对应线性无关的列向量,
非主元列对应Ax=0的自由变量,自由变量又可是视为线性无关的参数向量的系数,即k个自由变量对应着k个线性无关的向量,所以也可以理解成非主元列对应线性无关的参数向量



列空间的维数 主元列的个数 线性无关的列向量个数),
零空间的维数 非主元列的个数 Ax=0中自由变量的个数,而自由变量又作为 线性无关 的参数向量的系数,即对应一个参数向量)

所谓的主元列,就是 线性无关 的列(向量),
所谓的自由变量就是对应 线性无关 向量的 系数(权值)
系数矩阵A的主元列本身就是构成列空间的基。
是的,线 性无关的对象是向量 只有线性无关的向量集才能表示其他向量。
R n的k维子空间,是k个线性无关的向量集构成的。
矩阵A中,如果有线性相关的列,则detA=0,因为经过三种初等行变换可以使线性相关的其中一列变为0,再把行列式按照为0的那列余子式展开,结果显然一定是0, 伴随矩阵,是余子式构成的矩阵的转置。



好了,插一个概念,究竟什么叫主元列
首先一个矩阵经过初等行变换可以化为一个阶梯型矩阵
阶梯行矩阵中元素不全为0的行称为非零行
非零行最左边的非零元素称为先导元素
先导元素总是出现在相同的位置
而先导元素的位置称为主元位置
含有主元位置的列称为主元列。

矩阵三个方面的应用:
1. 齐次方程和非齐次方程
2. 坐标变换
3. 二次型

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值