高等数学 1.6 极限存在准则 两个重要极限

第一个准则

准则Ⅰ:如果数列 { x n } \{ x_n \} {xn} { y n } \{ y_n \} {yn} { z n } \{ z_n \} {zn} 满足下列条件:
(1)从某项起,即 ∃ n 0 ∈ N + \exists n_0 \in \mathbb{N}_+ n0N+ ,当 n > n 0 n > n_0 n>n0 时,有
y n ⩽ x n ⩽ z n y_n \leqslant x_n \leqslant z_n ynxnzn
(2) lim ⁡ n → ∞ y n = a \lim \limits_{n \to \infty} y_n = a nlimyn=a lim ⁡ n → ∞ z n = a \lim \limits_{n \to \infty} z_n = a nlimzn=a
那么数列 { x n } \{ x_n \} {xn} 的极限存在,且 lim ⁡ n → ∞ x n = a \lim \limits_{n \to \infty} x_n = a nlimxn=a .

准则Ⅰ’:如果
(1)当 x ∈ U ˚ ( x 0 , r ) x \in \mathring{U}(x_0, r) xU˚(x0,r) (或 ∣ x ∣ > M | x | > M x>M)时,
g ( x ) ⩽ f ( x ) ⩽ h ( x ) ; \mathrm{g}(x) \leqslant f(x) \leqslant h(x) ; g(x)f(x)h(x);
(2) lim ⁡ x → 0 ( x → ∞ ) g ( x ) = A \lim \limits_{x \to 0(x \to \infty)} \mathrm{g}(x) = A x0(x)limg(x)=A lim ⁡ x → 0 ( x → ∞ ) h ( x ) = A \lim \limits_{x \to 0(x \to \infty)} h(x) = A x0(x)limh(x)=A
那么 lim ⁡ x → 0 ( x → ∞ ) f ( x ) \lim \limits_{x \to 0(x \to \infty)} f(x) x0(x)limf(x) 存在,且等于 A A A

准则Ⅰ及准则Ⅰ’称为夹逼准则

第一个重要极限

lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x \to 0} \cfrac{\sin x}{x} = 1 x0limxsinx=1

例1 求 lim ⁡ x → 0 tan ⁡ x x \lim \limits_{x \to 0} \cfrac{\tan x}{x} x0limxtanx
解: lim ⁡ x → 0 tan ⁡ x x = lim ⁡ x → 0 ( sin ⁡ x x ⋅ 1 cos ⁡ x ) = lim ⁡ x → 0 sin ⁡ x x ⋅ lim ⁡ x → 0 1 cos ⁡ x = 1 \lim \limits_{x \to 0} \cfrac{\tan x}{x} = \lim \limits_{x \to 0} \left( \cfrac{\sin x}{x} \cdot \cfrac{1}{\cos x} \right) = \lim \limits_{x \to 0} \cfrac{\sin x}{x} \cdot \lim \limits_{x \to 0} \cfrac{1}{\cos x} = 1 x0limxtanx=x0lim(xsinxcosx1)=x0limxsinxx0limcosx1=1.

例2 求 lim ⁡ x → 0 1 − cos ⁡ x x 2 \lim \limits_{x \to 0} \cfrac{1 - \cos x}{x^2} x0limx21cosx .
解:
lim ⁡ x → 0 1 − cos ⁡ x x 2 = lim ⁡ x → 0 ( sin ⁡ 2 x x 2 ⋅ 1 1 + cos ⁡ x ) = lim ⁡ x → 0 ( sin ⁡ x x ) 2 ⋅ lim ⁡ x → 0 1 1 + cos ⁡ x = 1 2 \lim_{x \to 0} \cfrac{1 - \cos x}{x^2} = \lim_{x \to 0} \left( \cfrac{\sin^2 x}{x^2} \cdot \cfrac{1}{1 + \cos x} \right) = \lim_{x \to 0} \left( \cfrac{\sin x}{x} \right)^2 \cdot \lim_{x \to 0} \cfrac{1}{1 + \cos x} = \cfrac{1}{2} x0limx21cosx=x0lim(x2sin2x1+cosx1)=x0lim(xsinx)2x0lim1+cosx1=21

例3 求 lim ⁡ x → 0 arcsin ⁡ x x \lim \limits_{x \to 0} \cfrac{\arcsin x}{x} x0limxarcsinx.
解:令 t = arcsin ⁡ x t = \arcsin x t=arcsinx ,则 x = sin ⁡ t x = \sin t x=sint ,当 x → 0 x \to 0 x0 时,有 t → 0 t \to 0 t0 .于是由复合函数的极限运算法则得
lim ⁡ x → 0 arcsin ⁡ x x = lim ⁡ t → 0 t sin ⁡ t = 1 \lim_{x \to 0} \cfrac{\arcsin x}{x} = \lim_{t \to 0} \cfrac{t}{\sin t} = 1 x0limxarcsinx=t0limsintt=1

第二个准则

准则Ⅱ单调有界数列必有极限。

相应于单调有界数列必有极限的准则Ⅱ,函数极限也有类似的准则。对于自变量的不同变化过程 ( x → x 0 − , x → x 0 + , x → − ∞ , x 0 → ∞ ) (x \to x_0^-, x \to x_0^+, x \to - \infty, x_0 \to \infty) (xx0,xx0+,x,x0) ,准则的形式有所不同。以 x → x 0 − x \to x_0^- xx0 为例,相应的准则叙述如下:
准则Ⅱ’:设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某个左邻域内单调并且有界,则 f ( x ) f(x) f(x) x 0 x_0 x0 的左极限 f ( x 0 − ) f(x_0^-) f(x0) 必定存在。

第二个重要极限

lim ⁡ x → ∞ ( 1 + 1 x ) x = e 或者 lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x \to \infty} \left( 1 + \cfrac{1}{x} \right)^x = \mathrm{e} \quad 或者 \quad \lim_{x \to 0} \left( 1 + x \right)^{\cfrac{1}{x}} = \mathrm{e} xlim(1+x1)x=e或者x0lim(1+x)x1=e

例4 求 lim ⁡ x → ∞ ( 1 − 1 x ) x \lim \limits_{x \to \infty} \left( 1 - \cfrac{1}{x} \right)^x xlim(1x1)x .
解:令 t = − x t = -x t=x ,则当 x → ∞ x \to \infty x 时, t → ∞ t \to \infty t .于是
lim ⁡ x → ∞ ( 1 − 1 x ) x = lim ⁡ t → ∞ ( 1 + 1 t ) − t = lim ⁡ t → ∞ 1 ( 1 + 1 t ) t = 1 e . \lim_{x \to \infty} \left( 1 - \cfrac{1}{x} \right)^x = \lim_{t \to \infty} \left( 1 + \cfrac{1}{t} \right)^{-t} = \lim_{t \to \infty} \cfrac{1}{\left( 1 + \cfrac{1}{t} \right)^t} = \cfrac{1}{\mathrm{e}} . xlim(1x1)x=tlim(1+t1)t=tlim(1+t1)t1=e1.

柯西(Cauchy)极限存在准则

柯西极限存在准则:数列 { x n } \{ x_n \} {xn} 收敛的充分必要条件是:对于任意给定的正数 ε \varepsilon ε ,存在正整数 N N N ,使得当 m > N , n > N m > N, n > N m>N,n>N 时,有
∣ x n − x m ∣ ⩽ ε . \left| x_n - x_m \right| \leqslant \varepsilon . xnxmε.

柯西极限存在准则有时也叫做柯西审敛原理

原文链接:高等数学 1.6 极限存在准则 两个重要极限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值