第二类换元法是:适当选择变量代换 x = ψ ( t ) x = \psi(t) x=ψ(t) ,将积分 ∫ f ( x ) d x \int f(x) \mathrm{d}x ∫f(x)dx 化为积分 ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t \int f[\psi(t)]\psi'(t)\mathrm{d}t ∫f[ψ(t)]ψ′(t)dt .这是另一种形式的变量代换,换元公式可表达为
∫ f ( x ) d x = ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t \int f(x) \mathrm{d}x = \int f[\psi(t)] \psi'(t) \mathrm{d}t ∫f(x)dx=∫f[ψ(t)]ψ′(t)dt
这公式成立是需要一定条件的。首先,等式右边的不定积分要存在,即 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)] \psi'(t) f[ψ(t)]ψ′(t) 有原函数;其次, ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t \int f[\psi(t)] \psi'(t) \mathrm{d}t ∫f[ψ(t)]ψ′(t)dt 求出后必须用 x = ψ ( t ) x = \psi(t) x=ψ(t) 的反函数 t = ψ − 1 ( x ) t = \psi^{-1} (x) t=ψ−1(x) 代回去,为了保证这反函数存在且可导,我们假定直接函数 x = ψ ( t ) x = \psi(t) x=ψ(t) 在 t t t 的某一个区间上式单调的、可导的、并且 ψ ′ ( t ) ≠ 0 \psi'(t) \neq 0 ψ′(t)=0 。
定理 设 x = ψ ( t ) x = \psi(t) x=ψ(t) 是单调的可导函数,并且 ψ ′ ( t ) ≠ 0 \psi'(t) \neq 0 ψ′(t)=0 .又设 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)]\psi'(t) f[ψ(t)]ψ′(t) 具有原函数,则有换元公式
∫ f ( x ) d x = [ ∫ f [ ψ ( t ) ] ψ ′ ( t ) d t ] t = ψ − 1 ( x ) (1) \int f(x) \mathrm{d}x = \left[ \int f[\psi(t)] \psi'(t) \mathrm{d}t \right]_{t = \psi^{-1}(x)} \tag{1} ∫f(x)dx=[∫f[ψ(t)]ψ′(t)dt]t=ψ−1(x)(1)
其中 ψ − 1 ( x ) \psi^{-1}(x) ψ−1(x) 是 x = ψ ( t ) x = \psi (t) x=ψ(t) 的反函数。
证明:设 f [ ψ ( t ) ] ψ ′ ( t ) f[\psi(t)]\psi'(t) f[ψ(t)]ψ′(t) 的原函数为 Φ ( t ) \Phi(t) Φ(t) ,记 Φ [ ψ − 1 ( x ) ] = F ( x ) \Phi[\psi^{-1}(x)] = F(x) Φ[ψ−1(x)]=F(x) ,利用复合函数及反函数的求导法则,得到
F ′ ( x ) = d Φ d t ⋅ d t d x = f [ ψ ( t ) ] ψ ′ ( t ) ⋅ 1 ψ ′ ( t ) = f [ ψ ( t ) ] = f ( x ) F'(x) = \cfrac{\mathrm{d} \Phi}{\mathrm{d}t} \cdot \cfrac{\mathrm{d}t}{\mathrm{d}x} = f[\psi(t)]\psi'(t) \cdot \cfrac{1}{\psi'(t)} = f[\psi(t)] = f(x) F′(x)=dtdΦ⋅dxdt=f[ψ(t)]ψ′(t)⋅ψ′(t)1=f[ψ(t)]=f(x)
即 F ( x ) F(x) F(x) 是 f ( x ) f(x) f(x) 的原函数。所以有
∫ f ( x ) d x = F ( x ) + C = Φ [ ψ − 1 ( x ) ] + C = [ ∫ f [ ψ ( t ) ] ψ ′ t d t ] t = ψ − 1 ( x ) . \int f(x) \mathrm{d}x = F(x) + C = \Phi[\psi^{-1}(x)] + C = \left[ \int f[\psi(t)] \psi'{t} \mathrm{d}t \right]_{t = \psi^{-1}(x)} . ∫f(x)dx=F(x)+C=Φ[ψ−1(x)]+C=[∫f[ψ(t)]ψ′tdt]t=ψ−1(x).
这就证明了换元公式 ( 1 ) (1) (1) 。
例21 求 ∫ a 2 − x 2 d x ( a > 0 ) \displaystyle \int \sqrt{a^2 - x^2} \mathrm{d}x (a > 0) ∫a2−x2dx(a>0) .
解:这个积分的困难在于有根式 a 2 − x 2 \sqrt{a^2 - x^2} a2−x2 ,但我们可以利用三角函数公式
sin 2 t + cos 2 t = 1 \sin^2t + \cos^2t = 1 sin2t+cos2t=1
来化去根式。
设 x = sin t , − π 2 < t < π 2 x = \sin t, - \cfrac{\pi}{2} < t < \cfrac{\pi}{2} x=sint,−2π<t<2π ,则 a 2 − x 2 = a 2 − a 2 sin 2 t = a cos t , d x = a cos t d t \sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2t} = a \cos t, \mathrm{d}x = a \cos t \mathrm{d}t a2−x2=a2−a2sin2t=acost,dx=acostdt ,所求积分化为
∫ a 2 − x 2 d x = ∫ a cos t ⋅ a cos t d t = a 2 ∫ cos 2 t d t . \int \sqrt{a^2 - x^2} \mathrm{d}x = \int a \cos t \cdot a \cos t \mathrm{d}t = a^2 \int \cos^2 t \mathrm{d}t. ∫a2−x2dx=∫acost⋅acostdt=a2∫cos2tdt.
又
∫ a 2 − x 2 d x = a 2 ( t 2 + sin 2 t 4 ) + C = a 2 2 t + a 2 2 sin t cos t + C . \int \sqrt{a^2 - x^2} \mathrm{d}x = a^2 \left( \cfrac{t}{2} + \cfrac{\sin 2t}{4} \right) +C = \cfrac{a^2}{2} t + \cfrac{a^2}{2} \sin t \cos t + C . ∫a