高等数学 4.2 换元积分法(一)第一类换元法

f ( u ) f(u) f(u) 具有原函数 F ( u ) F(u) F(u) ,即
F ′ ( u ) = f ( u ) , ∫ f ( u ) d u = F ( u ) + C F'(u) = f(u), \quad \int f(u) \mathrm{d}u = F(u) + C F(u)=f(u),f(u)du=F(u)+C
如果 u u u 是中间变量: u = φ ( x ) u = \varphi(x) u=φ(x) ,且设 φ ( x ) \varphi (x) φ(x) 可微,那么根据复合函数微分法,有
d F [ φ ( x ) ] = f [ φ ( x ) ] φ ′ ( x ) d x \mathrm{d} F[\varphi (x)] = f[\varphi (x)] \varphi'(x) \mathrm{d} x dF[φ(x)]=f[φ(x)]φ(x)dx
从而根据不定积分定义,得
∫ f [ φ ( x ) ] φ ′ ( x ) d x = F [ φ ( x ) ] + C = [ ∫ f ( u ) d u ] u = φ ( x ) \int f[\varphi (x)] \varphi'(x) \mathrm{d} x = F[\varphi (x)] + C = \left[ \int f(u) \mathrm{d}u \right]_{u = \varphi (x)} f[φ(x)]φ(x)dx=F[φ(x)]+C=[f(u)du]u=φ(x)
于是有下述定理:

定理1 设 f ( u ) f(u) f(u) 具有原函数, u = φ ( x ) u = \varphi(x) u=φ(x) 可导,则有换元公式
∫ f [ φ ( x ) ] φ ′ ( x ) d x = [ ∫ f ( u ) d u ] u = φ ( x ) . (1) \int f[\varphi (x)] \varphi'(x) \mathrm{d}x = \left[ \int f(u) \mathrm{d}u \right]_{u = \varphi (x)} . \tag{1} f[φ(x)]φ(x)dx=[f(u)du]u=φ(x).(1)

由此定理可见,虽然 ∫ f [ φ ( x ) ] φ ′ ( x ) d x \int f[\varphi(x)]\varphi'(x) \mathrm{d}x f[φ(x)]φ(x)dx 是一个整体的记号,但从形式上看,被积表达式中的 d x \mathrm{d}x dx 也可当做变量 x x x 的微分来对待,从而微分等式 φ ′ ( x ) d x = d u \varphi'(x)\mathrm{d}x = \mathrm{d}u φ(x)dx=du 可以方便地应用到被积表达式中来。

应用公式 ( 1 ) (1) (1) 来求不定积分,可以设 ∫ g ( x ) d x \int \mathrm{g}(x)\mathrm{d}x g(x)dx ,如果函数 g ( x ) \mathrm{g}(x) g(x) 可以化为 g ( x ) = f [ φ ( x ) ] φ ′ ( x ) \mathrm{g}(x) = f[\varphi(x)] \varphi'(x) g(x)=f[φ(x)]φ(x) 的形式,那么

∫ g ( x ) d x = ∫ f [ φ ( x ) ] φ ′ ( x ) d x = [ ∫ f ( u ) d u ] u = φ ( x ) , \int \mathrm{g}(x)\mathrm{d}x = \int f[\varphi(x)] \varphi'(x) \mathrm{d}x = \left[ \int f(u)\mathrm{d}u \right]_{u = \varphi (x)} , g(x)dx=f[φ(x)]φ(x)dx=[f(u)du]u=φ(x),
这样,函数 g ( x ) \mathrm{g}(x) g(x) 的积分即转化为函数 f ( u ) f(u) f(u) 的积分。如果能求得 f ( u ) f(u) f(u) 的原函数,那么也就得到了 g ( x ) \mathrm{g}(x) g(x) 的原函数。

例1 求 ∫ 2 cos ⁡ 2 x d x \int 2 \cos 2x \mathrm{d}x 2cos2xdx
解:被积函数中, cos ⁡ 2 x \cos 2x cos2x 是一个由 cos ⁡ 2 x = cos ⁡ u , u = 2 x \cos 2x = \cos u, u = 2x cos2x=cosu,u=2x 复合而成的复合函数,常数因子恰好是中间变量 u u u 的导数。因此,做变换 u = 2 x u = 2x u=2x ,便有
∫ 2 cos ⁡ 2 x d x = ∫ cos ⁡ 2 x ⋅ 2 d x = ∫ cos ⁡ 2 x ⋅ ( 2 x ) ′ d x = ∫ cos ⁡ u d u = sin ⁡ u + C , \int 2 \cos 2x \mathrm{d}x = \int \cos 2x \cdot 2\mathrm{d}x = \int \cos 2x \cdot (2x)' \mathrm{d}x = \int \cos u \mathrm{d}u = \sin u + C, 2cos2xdx=cos2x2dx=cos2x(2x)dx=cosudu=sinu+C,
再以 u = 2 x u = 2x u=2x 代入,即得
∫ 2 cos ⁡ 2 x d x = sin ⁡ 2 x + C . \int 2 \cos 2x \mathrm{d}x = \sin 2x + C. 2cos2xdx=sin2x+C.

例2 求 ∫ 1 3 + 2 x d x \int \cfrac{1}{3 + 2x} \mathrm{d}x 3+2x1dx .
解:被积函数 1 3 + 2 x = 1 u , u = 3 + 2 x \cfrac{1}{3 + 2x} = \cfrac{1}{u} ,u = 3 + 2x 3+2x1=u1,u=3+2x 。这里缺少 d u d x = 2 \cfrac{\mathrm{d}u}{\mathrm{d}x} = 2 dxdu=2 这样一个因子,但由于 d u d x \cfrac{\mathrm{d}u}{\mathrm{d}x} dxdu 是个常数,故可改变系数凑出这个因子:
1 3 + 2 x = 1 2 ⋅ 1 3 + 2 x ⋅ 2 = 1 2 ⋅ 1 3 + 2 x ( 3 + 2 x ) ′ , \cfrac{1}{3 + 2x} = \cfrac{1}{2} \cdot \cfrac{1}{3 + 2x} \cdot 2 = \cfrac{1}{2} \cdot \cfrac{1}{3 + 2x}(3 + 2x)' , 3+2x1=213+2x12=213+2x1(3+2x),

从而令 u = 3 + 2 x u = 3 + 2x u=3+2x ,便有
∫ 1 3 + 2 x d x = ∫ 1 2 ⋅ 1 3 + 2 x ( 3 + 2 x ) ′ d x = ∫ 1 2 ⋅ 1 u d u = 1 2 ln ⁡ ∣ u ∣ + C = 1 2 ln ⁡ ∣ 3 + 2 x ∣ + C . \begin{align*} \int \cfrac{1}{3 + 2x} \mathrm{d}x &= \int \cfrac{1}{2} \cdot \cfrac{1}{3 + 2x} (3 + 2x)' \mathrm{d}x = \int \cfrac{1}{2} \cdot \cfrac{1}{u} \mathrm{d}u \\ &= \cfrac{1}{2} \ln{|u|} + C = \cfrac{1}{2} \ln{|3 + 2x|} + C . \end{align*} 3+2x1dx=213+2x1(3+2x)dx=21u1du=21lnu+C=21ln∣3+2x+C.

一般地,对于积分 ∫ f ( a x + b ) d x ( a ≠ 0 ) \int f(ax + b) \mathrm{d}x (a \neq 0) f(ax+b)dx(a=0) ,总可作变换 u = a x + b u = ax + b u=ax+b ,把它化为
∫ f ( a x + b ) d x = ∫ 1 a f ( a x + b ) d ( a x + b ) = 1 a [ ∫ f ( u ) d u ] u = a x + b \int f(ax + b) \mathrm{d}x = \int \cfrac{1}{a} f(ax + b) \mathrm{d}(ax + b) = \cfrac{1}{a} \left[ \int f(u) \mathrm{d}u \right]_{u = ax + b} f(ax+b)dx=a1f(ax+b)d(ax+b)=a1[f(u)du]u=ax+b

例3 求 ∫ x 2 ( x + 2 ) 3 d x \int \cfrac{x^2}{(x + 2)^3} \mathrm{d}x (x+2)3x2dx .
解:令 u = x + 2 , d x = d u u = x + 2, \mathrm{d}x = \mathrm{d}u u=x+2,dx=du ,于是
∫ x 2 ( x + 2 ) 3 d x = ∫ ( u − 2 ) 2 u 3 d u = ∫ ( u 2 − 4 u + 4 ) u − 3 d u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值