高等数学 1.9 连续函数的运算与初等函数的连续性

一、连续函数的和、差、积、商的连续性

定理1 设函数 f ( x ) f(x) f(x) g ( x ) \mathrm{g}(x) g(x) 在点 x 0 x_0 x0 连续,则它们的和(差) f ± g f \pm \mathrm{g} f±g 、 积 f ⋅ g f \cdot \mathrm{g} fg 及商 f g \cfrac{f}{\mathrm g} gf (当 g ( x 0 ) ≠ 0 \mathrm g (x_0) \neq 0 g(x0)=0 时)都在点 x 0 x_0 x0 连续。

例1 因 tan ⁡ x = sin ⁡ x cos ⁡ x , cot ⁡ x = cos ⁡ x sin ⁡ x \tan x = \cfrac{\sin x}{\cos x}, \cot x = \cfrac{\cos x}{\sin x} tanx=cosxsinx,cotx=sinxcosx ,而 y = sin ⁡ x y = \sin x y=sinx y = cos ⁡ x y = \cos x y=cosx 都在区间 ( − ∞ , ∞ ) (- \infty, \infty) (,) 内连续,由定理1可知 y = tan ⁡ x y = \tan x y=tanx y = cot ⁡ x y = \cot x y=cotx 在它们的定义域内是连续的。

二、反函数与复合函数的连续性

定理2 如果函数 y = f ( x ) y = f(x) y=f(x) 在区间 I x I_x Ix 上单调增加(或单调减少)且连续,那么它的反函数 x = f − 1 ( y ) x = f^{-1} (y) x=f1(y) 也在对应的区间 I y = y ∣ y = f ( x ) , x ∈ I x I_y = \\{ y | y = f(x), x \in I_x \\} Iy=yy=f(x),xIx 上单调增加(或单调减少)且连续。

例2 由于 y = sin ⁡ x y = \sin x y=sinx 在闭区间 $\left[ - \cfrac{\pi}{2}, \cfrac{\pi}{2} \right] $ 上单调增加且连续,所以它的反函数 y = arcsin ⁡ x y = \arcsin x y=arcsinx 在闭区间 [ − 1 , 1 ] [-1, 1] [1,1] 上也是单调增加且连续的。

定理3 设函数 y = f [ g ( x ) ] y = f[\mathrm g (x)] y=f[g(x)] 由函数 u = g ( x ) u = \mathrm g (x) u=g(x) 与函数 y = f ( u ) y = f(u) y=f(u) 复合而成, U ˚ ( x 0 ) ⊂ D f ∘ g \mathring{U} (x_0) \subset D_{f \circ \mathrm g} U˚(x0)Dfg . 若 lim ⁡ x → x 0 g ( x ) = u 0 \lim \limits_{x \to x_0} \mathrm g (x) = u_0 xx0limg(x)=u0 ,而函数 y = f ( u ) y = f(u) y=f(u) u = u 0 u = u_0 u=u0 连续,则
lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = f ( u 0 ) . \lim \limits_{x \to x_0} f[\mathrm g (x)] = \lim \limits_{u \to u_0} f(u) = f(u_0) . xx0limf[g(x)]=uu0limf(u)=f(u0).

因为在定理3中有
lim ⁡ x → x 0 g ( x ) = u 0 , lim ⁡ u → u 0 = f ( u 0 ) \lim_{x \to x_0} \mathrm{g}(x) = u_0 , \quad \lim_{u \to u_0} = f(u_0) xx0limg(x)=u0,uu0lim=f(u0)
所以又可以写成
lim ⁡ x → x 0 f [ g ( x ) ] = f [ lim ⁡ x → x 0 g ( x ) ] . \lim_{x \to x_0} f[\mathrm g (x)] = f[\lim_{x \to x_0} \mathrm g (x)] . xx0limf[g(x)]=f[xx0limg(x)].

把定理3中的 x → x 0 x \to x_0 xx0 换成 x → ∞ x \to \infty x ,可得类似的定理。

例3 求 lim ⁡ x → 3 x − 3 x 2 − 9 \lim \limits_{x \to 3} \sqrt{\cfrac{x - 3}{x^2 - 9}} x3limx29x3 .
解:$ y = \sqrt{ \cfrac{x - 3}{x^2 - 9}} $ 可以看做有 y = u y = \sqrt u y=u u = x − 3 x 2 − 9 u = \cfrac{x - 3}{x^ 2 - 9} u=x29x3 复合而成。因为 lim ⁡ x → 3 x − 3 x 2 − 9 = 1 6 \lim \limits_{x \to 3} \cfrac{x - 3}{x^2 - 9} = \cfrac{1}{6} x3limx29x3=61 ,而函数 y = u y = \sqrt u y=u 在点 u = 1 6 u = \cfrac{1}{6} u=61 连续,所以
lim ⁡ x → 3 x − 3 x 2 − 9 = lim ⁡ x → 3 x − 3 x 2 − 9 = 1 6 = 6 6 . \lim_{x \to 3} \sqrt{\cfrac{x - 3}{x^2 - 9}} = \sqrt{\lim_{x \to 3} \cfrac{x - 3}{x^2 - 9}} = \sqrt{\cfrac{1}{6}} = \cfrac{\sqrt 6}{6} . x3limx29x3 =x3limx29x3 =61 =66 .

定理4 设函数 y = f [ g ( x ) ] y = f[\mathrm g (x)] y=f[g(x)] 由函数 u = g ( x ) u = \mathrm g (x) u=g(x) 与函数 y = f ( u ) y = f(u) y=f(u) 复合而成, U ˚ ( x 0 ) ⊂ D f ∘ g \mathring{U} (x_0) \subset D_{f \circ \mathrm g} U˚(x0)Dfg .若函数 u = g ( x ) u = \mathrm g (x) u=g(x) x = x 0 x = x_0 x=x0 连续,且 g ( x 0 ) = u 0 \mathrm g (x_0) = u_0 g(x0)=u0 而函数 y = f ( u ) y = f(u) y=f(u) u = u 0 u = u_0 u=u0 连续,则复合函数 y = f [ g ( x ) ] y = f[\mathrm g (x)] y=f[g(x)] x = x 0 x = x_0 x=x0 也连续。

例4 讨论函数 y = sin ⁡ 1 x y = \sin{\cfrac{1}{x}} y=sinx1 的连续性。
解:函数 y = sin ⁡ 1 x y = \sin{\cfrac{1}{x}} y=sinx1 可看作是由 u = 1 x u = \cfrac{1}{x} u=x1 y = sin ⁡ u y = \sin u y=sinu 复合而成的。 u = 1 x u = \cfrac{1}{x} u=x1 − ∞ < x < 0 - \infty < x < 0 <x<0 0 < x < ∞ 0 < x < \infty 0<x< 时是连续的, y = sin ⁡ u y = \sin u y=sinu − ∞ < u < + ∞ - \infty < u < + \infty <u<+ 时是连续的。根据定理4,函数 y = sin ⁡ 1 x y = \sin{\cfrac{1}{x}} y=sinx1 在无限区间 ( − ∞ , 0 ) (- \infty, 0) (,0) ( 0 , + ∞ ) (0, + \infty) (0,+) 内是连续的。

三、初等函数的连续性

基本初等函数在它们的定义域内都是连续的

重要结论:一切初等函数在其定义区间内都是连续的。所谓定义区间,就是包含在定义域内的区间。

初等函数连续性的结论提供了一个求极限的方法:如果 f ( x ) f(x) f(x) 是初等函数,且 x 0 x_0 x0 f ( x ) f(x) f(x) 的定义区间内的点,那么
lim ⁡ x → x 0 f ( x ) = f ( x 0 ) . \lim_{x \to x_0} f(x) = f(x_0) . xx0limf(x)=f(x0).

例5 求 lim ⁡ x → 0 log ⁡ a ( 1 + x ) x ( a > 0 , a ≠ 1 ) \lim \limits_{x \to 0} \cfrac{\log_a (1 + x)}{x} (a > 0, a \neq 1) x0limxloga(1+x)(a>0,a=1) .
解: lim ⁡ x → 0 log ⁡ a ( 1 + x ) x = lim ⁡ x → 0 log ⁡ a ( 1 + x ) 1 x = log ⁡ a e = 1 ln ⁡ a \lim \limits_{x \to 0} \cfrac{\log_a (1 + x)}{x} = \lim \limits_{x \to 0} \log_a (1 + x)^{\frac{1}{x}} = \log_a \mathrm e = \cfrac{1}{\ln a} x0limxloga(1+x)=x0limloga(1+x)x1=logae=lna1

例6 求 lim ⁡ x → 0 a x − 1 x , ( a > 0 , a ≠ 1 ) \lim \limits_{x \to 0} \cfrac{a^x - 1}{x}, (a > 0, a \neq 1) x0limxax1,(a>0,a=1).
解:令 a x − 1 = t a^x - 1 = t ax1=t ,则 x = log ⁡ a ( 1 + t ) x = \log_a (1 + t) x=loga(1+t) ,当 x → 0 x \to 0 x0 t → 0 t \to 0 t0 ,于是
lim ⁡ x → 0 a x − 1 x = lim ⁡ t → 0 t log ⁡ a ( 1 + t ) = ln ⁡ a \lim_{x \to 0} \cfrac{a^x -1}{x} = \lim_{t \to 0} \cfrac{t}{\log_a (1 + t)} = \ln a x0limxax1=t0limloga(1+t)t=lna

例7 求 lim ⁡ x → 0 ( 1 + x ) α − 1 x ( α ∈ R ) \lim \limits_{x \to 0} \cfrac{(1 + x)^{\alpha} - 1}{x} (\alpha \in \mathbb{R}) x0limx(1+x)α1(αR) .
解:令 ( 1 + x ) α − 1 = t (1 + x)^{\alpha} -1 = t (1+x)α1=t ,则当 x → 0 x \to 0 x0 时, t → 0 t \to 0 t0 ,于是
lim ⁡ x → 0 ( 1 + x ) α − 1 x = lim ⁡ x → 0 [ ( 1 + x ) α − 1 ln ⁡ ( 1 + x ) α ⋅ α ln ⁡ ( 1 + x ) x ] = lim ⁡ t → 0 t ln ⁡ ( 1 + t ) ⋅ lim ⁡ x → 0 α ln ⁡ ( 1 + x ) x = α . \lim_{x \to 0} \cfrac{(1 + x)^{\alpha} - 1}{x} = \lim_{x \to 0} \left[ \cfrac{(1 + x)^{\alpha} - 1}{\ln(1 + x)^{\alpha}} \cdot \cfrac{\alpha \ln (1 + x)}{x} \right] = \lim_{t \to 0} \cfrac{t}{\ln (1 + t)} \cdot \lim_{x \to 0} \cfrac{\alpha \ln (1 + x)}{x} = \alpha . x0limx(1+x)α1=x0lim[ln(1+x)α(1+x)α1xαln(1+x)]=t0limln(1+t)tx0limxαln(1+x)=α.

例8 求 lim ⁡ x → 0 ( 1 + 2 x ) 3 sin ⁡ x \lim \limits_{x \to 0} (1 + 2x)^{\frac{3}{\sin x}} x0lim(1+2x)sinx3 .
解:因为
( 1 + 2 x ) 3 sin ⁡ x = ( 1 + 2 x ) 1 2 x ⋅ x sin ⁡ x ⋅ 6 = e 6 ⋅ x sin ⁡ x ln ⁡ ( 1 + 2 x ) 1 2 x (1 + 2x)^{\frac{3}{\sin x}} = (1 + 2x)^{\frac{1}{2x} \cdot \frac{x}{\sin x} \cdot 6} = \mathrm e^{6 \cdot \frac{x}{\sin x} \ln (1 + 2x)^{\frac{1}{2x}}} (1+2x)sinx3=(1+2x)2x1sinxx6=e6sinxxln(1+2x)2x1
便有
lim ⁡ x → 0 ( 1 + 2 x ) 3 sin ⁡ x = e lim ⁡ x → 0 [ 6 ⋅ x sin ⁡ x ⋅ ln ⁡ ( 1 + 2 x ) 1 2 x ] = e 6 . \lim_{x \to 0} (1 + 2x)^{\frac{3}{\sin x}} = \mathrm e^{\lim \limits_{x \to 0} \left[ 6 \cdot \frac{x}{\sin x} \cdot \ln (1 + 2x)^{\frac{1}{2x}} \right]} = \mathrm e^6 . x0lim(1+2x)sinx3=ex0lim[6sinxxln(1+2x)2x1]=e6.

一般地,对于形如 u ( x ) v ( x ) ( u ( x ) > 0 , u ( x ) ≢ 1 ) u(x)^{v(x)}(u(x) > 0, u(x) \not\equiv 1) u(x)v(x)(u(x)>0,u(x)1) 的函数(通常称为幂指函数),如果
lim ⁡ u ( x ) = a > 0 , lim ⁡ v ( x ) = b , \lim u(x) =a > 0,\quad \lim v(x) = b, limu(x)=a>0,limv(x)=b,
那么
lim ⁡ u ( x ) v ( x ) = a b . \lim u(x)^{v(x)} = a^b. limu(x)v(x)=ab.
注意:这里三个 lim ⁡ \lim lim 都表示在同一自变量变化过程中的极限。

原文链接:高等数学 1.9 连续函数的运算与初等函数的连续性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值