一、定积分的定义
1.定义
定义 设函数 f ( x ) f(x) f(x) 在 [ a , b ] [a, b] [a,b] 上有界,在 [ a , b ] [a, b] [a,b] 中任意插入若干个分点
a = x 0 < x 1 < x 2 < ⋯ < x n − 1 < x n = b a = x_0 < x_1 < x_2 < \cdots < x_{n - 1} < x_n = b a=x0<x1<x2<⋯<xn−1<xn=b
把区间 [ a , b ] [a, b] [a,b] 分成 n n n 个小区间
[ x 0 , x 1 ] , [ x 1 , x 2 ] , ⋯ , [ x n − 1 , x n ] , [x_0, x_1], [x_1, x_2], \cdots , [x_{n - 1}, x_n] , [x0,x1],[x1,x2],⋯,[xn−1,xn],
各个小区间的长度依次为
Δ x 1 = x 1 − x 0 , Δ x 2 = x 2 − x 1 , ⋯ , Δ x n = x n − x n − 1 , \Delta x_1 = x_1 - x_0, \Delta x_2 = x_2 - x_1, \cdots , \Delta x_n = x_n - x_{n - 1} , Δx1=x1−x0,Δx2=x2−x1,⋯,Δxn=xn−xn−1,
在每个小区间 [ x i − 1 , x i ] [x_{i - 1}, x_i] [xi−1,xi] 上任取一点 ξ i ( x i − 1 ⩽ ξ i ⩽ x i ) \xi_i (x_{i - 1} \leqslant \xi_i \leqslant x_i) ξi(xi−1⩽ξi⩽xi) ,做函数值 f ( ξ i ) f(\xi_i) f(ξi) 与小区间长度 Δ x i \Delta x_i Δxi 的乘积 f ( ξ i ) Δ x i ( i = 1 , 2 , ⋯ , n ) f(\xi_i) \Delta x_i (i = 1, 2, \cdots, n) f(ξi)Δxi(i=1,2,⋯,n) 并作出和
S = ∑ i = 1 n f ( ξ i ) Δ x i (1) S = \sum\limits_{i = 1}^n f(\xi_i) \Delta x_i \tag{1} S=i=1∑nf(ξi)Δxi(1)
记 λ = max { Δ x 1 , Δ x 2 , ⋯ , Δ x n } \lambda = \max{\{\Delta x_1, \Delta x_2, \cdots, \Delta x_n \}} λ=max{ Δx1,Δx2,⋯,Δxn} ,如果当 λ → 0 \lambda \to 0 λ→0 时,这和的极限总存在,且与闭区间 [ a , b ] [a, b] [a,b] 的分法及点 ξ i \xi_i ξi 的取法无关,把么称这个极限 I I I 为函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上的定积分(简称积分),记作 ∫ a b f ( x ) d x \displaystyle \int_a^b f(x) \mathrm{d}x ∫abf(x)dx ,即
∫ a b f ( x ) d x = I = lim λ → 0 ∑ i = 1 n f ( ξ i ) Δ x i (2) \int_a^b f(x) \mathrm{d}x = I = \lim_{\lambda \to 0} \sum_{i = 1}^n f(\xi_i) \Delta x_i \tag{2} ∫abf(x)dx=I=λ→0limi=1∑nf(ξi)Δxi(2)
其中 f ( x ) f(x) f(x) 叫做被积函数, f ( x ) d x f(x) \mathrm{d}x f(x)dx 叫做被积表达式, x x x 叫做积分变量, a a a 叫做积分下限, b b b 叫做积分上限, [ a , b ] [a, b] [a,